ALMA probes mysteries of jets from giant black holes

Oct 16, 2013
This detailed view shows the central parts of the nearby active galaxy NGC 1433. The dim blue background image, showing the central dust lanes of this galaxy, comes from the NASA/ESA Hubble Space Telescope. The coloured structures near the centre are from recent ALMA observations that have revealed a spiral shape, as well as an unexpected outflow, for the first time. Credit: ALMA (ESO/NAOJ/NRAO)/NASA/ESA/F. Combes

Two international teams of astronomers have used the power of the Atacama Large Millimeter/submillimeter Array to focus on jets from the huge black holes at the centers of galaxies and observe how they affect their surroundings. They have respectively obtained the best view yet of the molecular gas around a nearby, quiet black hole and caught an unexpected glimpse of the base of a powerful jet close to a distant black hole.

There are supermassive —with masses up to several billion solar masses—at the hearts of almost all galaxies in the Universe, including our own galaxy, the Milky Way. In the remote past, these bizarre objects were very active, swallowing enormous quantities of matter from their surroundings, shining with dazzling brilliance, and expelling tiny fractions of this matter through extremely powerful jets. In the current Universe, most are much less active than they were in their youth, but the interplay between jets and their surroundings is still shaping galaxy evolution.

Two new studies, both published today in the journal Astronomy & Astrophysics, used ALMA to probe black hole jets at very different scales: a nearby and relatively quiet black hole in the galaxy NGC 1433 and a very distant and active object called PKS 1830-211.

"ALMA has revealed a surprising spiral structure in the molecular gas close to the centre of NGC 1433," says Françoise Combes (Observatoire de Paris, France), who is the lead author of the first paper. "This explains how the material is flowing in to fuel the black hole. With the sharp new observations from ALMA, we have discovered a jet of material flowing away from the black hole, extending for only 150 light-years. This is the smallest such molecular outflow ever observed in an external galaxy."

The discovery of this outflow, which is being dragged along by the jet from the central black hole, shows how such jets can stop star formation and regulate the growth of the central bulges of galaxies.

In PKS 1830-211, Ivan Marti-Vidal (Chalmers University of Technology, Onsala Space Observatory, Onsala, Sweden) and his team also observed a supermassive black hole with a jet, but a much brighter and more active one in the early Universe. It is unusual because its brilliant light passes a massive intervening galaxy on its way to Earth, and is split into two images by gravitational lensing.

From time to time, supermassive black holes suddenly swallow a huge amount of mass, which increases the power of the jet and boosts the radiation up to the very highest energies. And now ALMA has, by chance, caught one of these events as it happens in PKS 1830-211.

"The ALMA observation of this case of black hole indigestion has been completely serendipitous. We were observing PKS 1830-211 for another purpose, and then we spotted subtle changes of colour and intensity among the images of the gravitational lens. A very careful look at this unexpected behaviour led us to the conclusion that we were observing, just by a very lucky chance, right at the time when fresh new matter entered into the jet base of the black hole," says Sebastien Muller, a co author of the second paper.

The team also looked to see whether this violent event had been picked up with other telescopes and were surprised to find a very clear signal in gamma rays, thanks to monitoring observations with NASA's Fermi Gamma-ray Space Telescope. The process that caused the increase of radiation at ALMA's long wavelengths was also responsible of boosting the light in the jet dramatically, up to the highest energies in the Universe.

"This is the first time that such a clear connection between gamma rays and submillimetre radio waves has been established as coming from the real base of a black hole's jet," adds Sebastien Muller.

The two new observations are just the start of ALMA's investigations into the workings of jets from supermassive black holes, near and far. Combes's team is already studying other nearby active galaxies with ALMA and the unique object PKS 1830-211 is expected to be the focus of much future research with ALMA and other telescopes.

"There is still a lot to be learned about how black holes can create these huge energetic jets of matter and radiation," concludes Ivan Marti-Vidal. "But the new results, obtained even before ALMA was completed, show that it is a uniquely powerful tool for probing these jets—and the discoveries are just beginning!"

Explore further: Powerful jets blowing material out of galaxy: Process limits growth of central black hole and rate of star formation

More information: These research projects are presented in two papers, "ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC1433", by F. Combes et al. and "Probing the jet base of the blazar PKS 1830−211 from the chromatic variability of its lensed images: Serendipitous ALMA observations of a strong gamma-ray flare", by I. Marti-Vidal et al. Both papers are appeared in the journal Astronomy & Astrophysics.

Related Stories

4C+29.30: Black hole powered jets plow into galaxy

May 15, 2013

(Phys.org) —This composite image of a galaxy illustrates how the intense gravity of a supermassive black hole can be tapped to generate immense power. The image contains X-ray data from NASA's Chandra X-ray ...

Spiral Galaxy NGC 3627

Jul 15, 2013

(Phys.org) —The spiral galaxy NGC 3627 is located about 30 million light years from Earth. This composite image includes X-ray data from NASA's Chandra X-ray Observatory (blue), infrared data from the Spitzer ...

Recommended for you

Astronomers measure weight of galaxies, expansion of universe

2 hours ago

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

Mysterious molecules in space

13 hours ago

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

Jul 28, 2014

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1.3 / 5 (12) Oct 16, 2013
Weird how all that material is falling up and out of this "gravity well".
Fleetfoot
5 / 5 (4) Oct 16, 2013
This is because the gas gets atomized into photons and neutrons before it can reach the event horizon.


Rubbish, free neutrons decay in ~15 minutes. Matter is turned into plasma by the high temperatures in the disc and most will enter in that form.
Tuxford
1 / 5 (12) Oct 16, 2013
'With the sharp new observations from ALMA, we have discovered a jet of material flowing away from the black hole, extending for only 150 light-years. This is the smallest such molecular outflow ever observed in an external galaxy." '

And the newly created and ejected material from the grey hole core star settles into an orbital plane and eventually forms stars, some of which are caught in the gravity well and torn apart again as they wander inward too close to the core star, while others continue on their journey to the suburbs, where life then develops, and which eventually grows to wonder about the fantasy of black holes, expanding nothingness, and huge bang creation fixations.

http://phys.org/n...ays.html