Tiny antennas let long light waves see in infrared

Sep 24, 2013 by Liz Ahlberg
Nanoantennas made of semiconductor can help scientists detect molecules with infrared light. Credit: Daniel Wasserman

(Phys.org) —University of Illinois at Urbana-Champaign researchers have developed arrays of tiny nano-antennas that can enable sensing of molecules that resonate in the infrared (IR) spectrum.

"The identification of molecules by sensing their unique absorption resonances is very important for environmental monitoring, industrial process control and ," said team leader Daniel Wasserman, a professor of electrical and computer engineering. Wasserman is also a part of the Micro and Nano Technology Laboratory at Illinois.

The food and pharmaceutical industries use light to detect contaminants and to ensure quality. The light interacts with the bonds in the molecules, which resonate at particular frequencies, giving each molecule a "spectral fingerprint." Many molecules and materials more strongly resonate in the IR end of the spectrum, which has very long – often larger than the molecules themselves.

"The absorption signatures of some of the molecules of interest for these applications can be quite weak, and as we move to nano-scale materials, it can be very difficult to see absorption from volumes smaller than the ," Wasserman said. "It is here that our antenna array surfaces could have a significant impact."

Other nano-scale antenna systems cannot be tuned to a longer because of the limitations of traditional nanoantenna materials. The Illinois team used highly , grown by a technique called that is used to make IR lasers and detectors.

"We have shown that fabricated from highly doped semiconductors act as antennas in the infrared," said Stephanie Law, a at Illinois and the lead author of the work. "The antennas concentrate this very long wavelength light into ultra-subwavelength volumes, and can be used to sense molecules with very weak absorption resonances."

The semiconductor antenna arrays allow long-wavelength light to strongly interact with nano-scale samples, so the arrays could enhance the detection of small volumes of materials with a standard IR spectrometer – already a commonplace piece of equipment in many industrial and research labs.

The researchers further demonstrated their ability to control the position and strength of the antenna resonance by adjusting the nanoantenna dimensions and the semiconductor material properties.

The group will continue to explore new shapes and structures to further enhance light-matter interaction at very small scales and to potentially integrate these materials with other sensing systems.

"We are looking to integrate these antenna structures with optoelectronic devices to make more efficient, smaller, optoelectronic components for sensing and security applications," Wasserman said.

The paper is titled "All-Semiconductor Plasmonic Nanoantennas for Infrared Sensing."

Explore further: Discovery of a new mechanism for wavelength conversion of light by a plastic material

More information: pubs.acs.org/doi/full/10.1021/nl402766t

Related Stories

Optics: Nanotechnology's benefits brought into focus

Aug 14, 2013

Conventional lenses, made of shaped glass, are limited in how precisely they can redirect beams of incoming light and make them meet at a point. Now, a team led by Zhengtong Liu at the A*STAR Institute of ...

Recommended for you

Bacterial nanowires: Not what we thought they were

Aug 18, 2014

For the past 10 years, scientists have been fascinated by a type of "electric bacteria" that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hudres
1 / 5 (1) Sep 24, 2013
This concept was patented by the US Navy about a decade ago. Old news. Potential patent infringement problems. Caveat Emptor