Growing thin films of germanium

September 6, 2013
Growing thin films of germanium
High-speed germanium thin-film transistors enable next-generation electronics. Credit: Kyushu Univ./T. Sadoh

Researchers have developed a new technique to produce thin films of germanium crystals—key components for next-generation electronic devices such as advanced large-scale integrated circuits and flexible electronics, which are required for gadgets that move or bend.

Unlike conventional methods, the new approach does not require or other crystals to act as seeds to grow the germanium crystal. And, the researchers say, the new method can be used to produce germanium films with a very large area, allowing for more potential applications.

"This is the realization of the dreams of crystal-growth researchers," says Taizoh Sadoh of Kyushu University. "This unique method will open new ways to create advanced flexible electronics."

Sadoh is an author of the paper describing the new work, which appears in the AIP Publishing journal Applied Physics Letters.

Charged particles move through germanium more readily than they do through silicon, making germanium a good material for electronics. In particular, it is a promising material for the thin-film transistors that are needed for flexible electronics. However, for use in flexible electronics, the germanium would have to be grown on malleable materials, which tend to soften at temperatures above 300° Celsius. The challenge, said Sadoh, is to grow germanium at lower temperatures.

Using gold as a catalyst, Sadoh and his colleagues were able to grow at a temperature of about 250° Celsius. They were also able to grow them in such a way that their crystal structure has the proper orientation and electrical properties necessary for technological applications.

Explore further: Researchers grow nanowire crystals for 3-D microchips

More information: The paper, "Nucleation controlled gold-induced-crystallization for selective formation of Ge(100) and (111) on insulator at low-temperature (~250° C)" by Jong-Hyeok Park, Tsuneharu Suzuki, Masahi Kurosawa, Masanobu Miyao and Taizoh Sadoh appears in the journal Applied Physics Letters:

Related Stories

Germanium made compatible for lasers

April 22, 2013

( —Good news for the computer industry: a team of researchers has managed to make germanium suitable for lasers. This could enable microprocessor components to communicate using light in future, which will make ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.