Growing thin films of germanium

September 6, 2013
Growing thin films of germanium
High-speed germanium thin-film transistors enable next-generation electronics. Credit: Kyushu Univ./T. Sadoh

Researchers have developed a new technique to produce thin films of germanium crystals—key components for next-generation electronic devices such as advanced large-scale integrated circuits and flexible electronics, which are required for gadgets that move or bend.

Unlike conventional methods, the new approach does not require or other crystals to act as seeds to grow the germanium crystal. And, the researchers say, the new method can be used to produce germanium films with a very large area, allowing for more potential applications.

"This is the realization of the dreams of crystal-growth researchers," says Taizoh Sadoh of Kyushu University. "This unique method will open new ways to create advanced flexible electronics."

Sadoh is an author of the paper describing the new work, which appears in the AIP Publishing journal Applied Physics Letters.

Charged particles move through germanium more readily than they do through silicon, making germanium a good material for electronics. In particular, it is a promising material for the thin-film transistors that are needed for flexible electronics. However, for use in flexible electronics, the germanium would have to be grown on malleable materials, which tend to soften at temperatures above 300° Celsius. The challenge, said Sadoh, is to grow germanium at lower temperatures.

Using gold as a catalyst, Sadoh and his colleagues were able to grow at a temperature of about 250° Celsius. They were also able to grow them in such a way that their crystal structure has the proper orientation and electrical properties necessary for technological applications.

Explore further: Researchers grow nanowire crystals for 3-D microchips

More information: The paper, "Nucleation controlled gold-induced-crystallization for selective formation of Ge(100) and (111) on insulator at low-temperature (~250° C)" by Jong-Hyeok Park, Tsuneharu Suzuki, Masahi Kurosawa, Masanobu Miyao and Taizoh Sadoh appears in the journal Applied Physics Letters: dx.doi.org/10.1063/1.4819015

Related Stories

Germanium made compatible for lasers

April 22, 2013

(Phys.org) —Good news for the computer industry: a team of researchers has managed to make germanium suitable for lasers. This could enable microprocessor components to communicate using light in future, which will make ...

Recommended for you

New device converts DC electric field to terahertz radiation

August 4, 2015

Terahertz radiation, the no-man's land of the electromagnetic spectrum, has long stymied researchers. Optical technologies can finagle light in the shorter-wavelength visible and infrared range, while electromagnetic techniques ...

The resplendent inflexibility of the rainbow

August 4, 2015

Children often ask simple questions that make you wonder if you really understand your subject. An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order—red, orange, ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

For faster battery charging, try a quantum battery?

August 3, 2015

(Phys.org)—Physicists have shown that a quantum battery—basically, a quantum system such as a qubit that stores energy in its quantum states—can theoretically be charged at a faster rate than conventional batteries. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.