Researchers' smartphone 'microscope' can detect a single virus, nanoparticles

September 17, 2013 by Bill Kisliuk

( —Your smartphone now can see what the naked eye cannot: A single virus and bits of material less than one-thousandth of the width of a human hair.

Aydogan Ozcan, a professor of electrical engineering and bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science, and his team have created a portable smartphone attachment that can be used to perform sophisticated field testing to detect without the need for bulky and expensive microscopes and lab equipment. The device weighs less than half a pound.

"This cellphone-based imaging platform could be used for specific and sensitive detection of sub-wavelength objects, including bacteria and viruses and therefore could enable the practice of nanotechnology and biomedical testing in field settings and even in remote and resource-limited environments," Ozcan said. "These results also constitute the first time that single nanoparticles and viruses have been detected using a cellphone-based, field-portable imaging system."

The new research, published on Sept. 9 in the American Chemical Society's journal ACS Nano, comes on the heels of Ozcan's other recent inventions, including a cellphone camera–enabled sensor for allergens in food products and a smart phone attachment that can conduct common kidney tests.

Capturing clear images of objects as tiny as a single virus or a nanoparticle is difficult because the strength and contrast are very low for objects that are smaller than the .

In the ACS Nano paper, Ozcan details a device fabricated by a 3-D printer that contains a , an external lens and a . The diode illuminates fluid or solid samples at a steep angle of roughly 75 degrees. This oblique illumination avoids detection of that would otherwise interfere with the intended fluorescent image.

Using this device, which attaches directly to the camera module on a smartphone, Ozcan's team was able to detect single human cytomegalovirus (HCMV) particles. HCMV is a common virus that can cause birth defects such as deafness and brain damage and can hasten the death of adults who have received organ implants, who are infected with the HIV virus or whose immune systems otherwise have been weakened. A single HCMV particle measures about 150–300 nanometers; a human hair is roughly 100,000 nanometers thick.

In a separate experiment, Ozcan's team also detected —specially marked fluorescent beads made of polystyrene—as small as 90–100 nanometers.

To verify these results, researchers in Ozcan's lab used other imaging devices, including a scanning electron microscope and a photon-counting confocal microscope. These experiments confirmed the findings made using the new cellphone-based imaging device.

Explore further: Got flow cytometry? All you need is five bucks and a cell phone

More information:

Related Stories

Cell phone camera photographs microscopic cell samples

April 11, 2013

On April 11th JoVE (Journal of Visualized Experiments) will publish a new video article by Dr. Aydogan Ozcan demonstrating how a cell phone camera can capture images from a fluorescent microscope and flow cytometer, which ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 17, 2013

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.