Photonics: Graphene boosts on-chip light detectors

Sep 16, 2013
Scanning electron microscope image of a silicon waveguide-integrated graphene photodetector. Light propagates along the waveguide and is converted in a sheet of graphene into an electrical signal. Credit: Thomas Mueller

The fabrication of high-performance light detectors—important for computers and mobile devices—using graphene integrated onto a chip is reported in three independent studies published online this week in Nature Photonics.

Dirk Englund and colleagues report an ultrafast graphene light detector that has a responsivity that is about 16 times greater than that of previous graphene light detectors over a broad bandwidth of 1,450–1,590 nm.

Thomas Mueller and co-workers describe in a second paper a graphene light detector with a multigigahertz operation over a wide range (1,310–1,650 nm) that includes all the bands used by optical-fibre communication systems. Its responsivity is approximately eight times higher than that of earlier graphene light detectors.

In a final study, Xiaomu Wang and colleagues fabricate a high-responsivity graphene photodiode that operates at mid-infrared frequencies. Its potential applications include monitoring chemicals in the environment and on-chip , which could be used for medical tests.

The unique optical and electrical properties of graphene and the ability to create these detectors using existing fabrication technology for in digital devices makes it very likely that graphene will soon replace germanium and compound semiconductors in high-performance light detectors. These three studies therefore further highlight the exciting potential of for optoelectronic devices.

Explore further: Researchers improve thermal conductivity of common plastic by adding graphene coating

More information:

add to favorites email to friend print save as pdf

Related Stories

Express tool for graphene quality control

Aug 29, 2013

The National Physical Laboratory (NPL) has collaborated with Chalmers University of Technology and Linköping University in Sweden to help develop a fast and inexpensive tool for quality control of graphene ...

Recommended for you

Gold nanoparticle chains confine light to the nanoscale

Oct 29, 2014

A multidisciplinary team at the Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES, CNRS), working in collaboration with physicists in Singapore and chemists in Bristol (UK), have shown that ...

Self-assembly of layered membranes

Oct 28, 2014

Techniques for creating complex nanostructured materials through self-assembly of molecules have grown increasingly sophisticated. But carrying these techniques to the biological realm has been problematic. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.