A new paradigm for nanoscale resolution MRI has been experimentally achieved

Sep 27, 2013
This illustration of the experimental setup shows the two unique components of the teams novel MRI technique that was successful in producing a 2-D MRI image with spatial resolution on the nanoscale. Credit: University of Illinois

A team from the University of Illinois at Urbana-Champaign and Northwestern University has devised a novel nuclear magnetic resonance imaging (MRI) technique that delivers a roughly 10-nanometer spatial resolution. This represents a significant advance in MRI sensitivity—modern MRI techniques commonly used in medical imaging yield spatial resolutions on the millimeter length scale, with the highest-resolution experimental instruments giving spatial resolution of a few micrometers.

"This is a very promising experimental result," said U. of I. physicist Raffi Budakian, who led the research effort. "Our approach brings MRI one step closer in its eventual progress toward atomic-scale imaging."

MRI is used widely in clinical practice to distinguish pathologic tissue from normal tissue. It is noninvasive and harmless to the patient, using strong fields and non-ionizing electromagnetic fields in the radio frequency range, unlike CT scans and tradiational X-rays, which both use more harmful .

MRI uses static and time-dependent magnetic fields to detect the collective response of large ensembles of nuclear spins from molecules localized within millimeter-scale volumes in the body. Increasing the detection resolution from the millimeter to nanometer range would be a technological dream come true.

The team's breakthrough—the new technique introduces two unique components to overcome obstacles to applying classic pulsed magnetic resonance techniques in . First, a novel protocol for spin manipulation applies periodic radio-frequency magnetic field pulses to encode temporal correlations in the statistical polarization of nuclear spins in the sample. Second, a nanoscale metal constriction focuses current, generating -pulses.

In their proof-of-principal demonstration, the team used an ultrasensitive magnetic resonance sensor based on a silicon nanowire oscillator to reconstruct a two-dimensional projection image of the proton density in a polystyrene sample at nanoscale spatial resolution.

"We expect this new technique to become a paradigm for nanoscale magnetic-resonance imaging and spectroscopy into the future," added Budakian. "It is compatible with and can be incorporated into existing conventional MRI technologies."

Explore further: First report of real-time manipulation and control of nuclear spin noise

More information: The team's work is published in "Nanoscale Fourier-Transform Magnetic Resonance Imaging" in Physical Review X, v. 3, issue 3, 031016. prx.aps.org/abstract/PRX/v3/i3/e031016%09

Related Stories

Team creates MRI for the nanoscale

Feb 13, 2013

Magnetic resonance imaging (MRI) reveals details of living tissues, diseased organs and tumors inside the body without x-rays or surgery. What if the same technology could peer down to the level of atoms? ...

Nanoscale MRI being developed

Feb 01, 2013

(Phys.org)—Two independent groups of scientists in the U.S. and Germany have reduced magnetic resonance imaging (MRI) down to the nanoscale, which may enable them in the future to non-destructively detect ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.