Greater desertification control using sand trap simulations

Sep 27, 2013

A new simulation will help improve artificial sand-control measures designed to help combat desertification.

In the fight against desertification, so-called straw checkerboard barriers (SCB) play a significant role. SCB consists of half -exposed criss-crossing rows of straws of wheat, rice, reeds, and other plants. The trouble is that our understanding of the laws governing wind- movement in SCB and their surrounding area is insufficient. Now, Ning Huang and colleagues from Lanzhou University in China have performed a of the sand movement inside the SCB, described in a paper just published in EPJ E. China is particularly affected by desertification, which affects 18 percent of its territory. The results will help us to understand sand fixation mechanisms that are relevant for and land-desertification control.

The authors relied on a simulation of large eddies, which are circulations around an obstruction such as the SCB walls, to study the turbulence stress.. They also used a discrete particle-tracing method to numerically simulate the wind -sand movement inside the SCB. Specifically, they described the sand as a gas, using equations to describe their space-averaged hydrodynamics. They also analysed in detail the movement characteristics of sand particles, the transverse velocities of sand particles and wind-sand flow within the SCB using a model taking into consideration the coupling effects of wind field and sand particles.

Huang and colleagues found that the SCB contributed to a decrease in the rate in its interior, thus helping the sand fixation. What is more, as the transverse distance increases, the strength of wind-sand flow decreases. Meanwhile, the sand accumulates near the interior walls of the SCB. Finally, as the number of SCBs increases, the wind is less able to transport sand.

Future studies will be designed to optimise SCB design, based on the authors' . These findings could also be used to study the evolution to sand dunes.

Explore further: Sands of time running out for rare Canadian desert

More information: Huang, N., Xia, X. and Tong, D. (2013), Numerical Simulation of Wind-sand Movement in Straw Checkerboard Barriers, European Physical Journal E. DOI: 10.1140/epje/i2013-13099-6

add to favorites email to friend print save as pdf

Related Stories

Transverse instability of megaripples

Mar 20, 2012

Aeolian ripples, which form regular patterns on sand beaches and desert floors, indicate the fundamental instability of flat sand surfaces under the wind-induced transport of sand grains.

World's largest extrusive body of sand?

Mar 20, 2012

Using 3-D seismic and well data from the northern North Sea, Helge Løseth of the Statoil Research Center (Trondheim, Norway) and colleagues describe a large (10 cubic kilometers) body of sand and interpret it as extrusive. ...

Protecting US troops against sand flies

Nov 19, 2012

U.S. Department of Agriculture (USDA) scientists are helping deployed American troops protect themselves against sand flies, which are major pests in Afghanistan, Africa and the Middle East.

Recommended for you

When a doughnut becomes an apple

27 minutes ago

In experiments using the wonder material graphene, ETH researchers have been able to demonstrate a phenomenon predicted by a Russian physicist more than 50 years ago. They analyzed a layer structure that ...

Uncovering the forbidden side of molecules

Sep 21, 2014

Researchers at the University of Basel in Switzerland have succeeded in observing the "forbidden" infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives ...

How Paramecium protozoa claw their way to the top

Sep 19, 2014

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 0