New engine coatings promise operational efficiencies and longer life

Sep 12, 2013
New engine coatings promise operational efficiencies and longer life
Credit: Shutterstock

Self-healing thermal barrier coatings (TBCs) designed to improve gas turbine engine efficiency have been developed by researchers at TU Delft in the Netherlands. The TBCs were tested in aero-engines, but can potentially be used in ships, submarines and even for generating electrical power.

Researchers working on the self-healing thermal barrier coatings (SAMBA) project wanted to develop a system of applying new ceramic TBCs to the most critical parts of engines. This would enable operators to push the engines beyond the of the structural components. By allowing higher operational temperatures, the ceramic coatings can save companies fuel and reduce CO2 emissions.

The operation of engines relies on the reliability of critical components, which are covered with a TBC. Failure of the TBC can result in accelerated degradation of the critical component, such as a blade, and ultimately lead to operational shut down.

The ceramic TBCs' ability to repair small cracks therefore has the potential to prolong the lifetime of coatings by 20 - 25%, and thus significantly reduce maintenance costs. It will also lead to a reduction in the number of replacements during a gas turbine engine lifetime.

Throughout the project, industry and universities worked together to develop and improve the TBCs. The new ceramic coating consists of a layer of zirconia, which includes small particles of and silicon. It is these small particles that enable the coating to self-repair. Upon fracture, the silicon is oxidised and fills the crack with . Subsequently, the silicon oxide reacts with the ceramic coating layer and creates a stable 'fill' of the crack.

The current generation of TBCs do not possess any self-repair qualities, which means that the new self-healing TBCs being developed by the SAMBA project represent a potential revolution in the treatment of turbo engines. What is more, the TBCs can potentially be applied to any field where it is necessary to improve thermal management and enhance engine fuel efficiency.

Explore further: Switzerland to test drone postal deliveries

More information: www.SAMBAproject.eu

Related Stories

Faster, better, safer jet engines

Jul 17, 2013

From Igor Sikorsky's first American helicopter to Pratt & Whitney's latest engine for the nation's new Joint Strike Fighter jet, Connecticut has a proud history of aviation science innovation.

New super ceramic may make super mining savings

Jul 12, 2013

A new super-strong ceramic developed by researchers at The University of Western Australia may enable power plant operators to save money on delays and costly repairs, and may prolong the life of expensive mining equipment.

Image: Pretty in pink

Apr 04, 2011

(PhysOrg.com) -- Inside the Plasma Spray-Physical Vapor Deposition, or PS-PVD, ceramic powder is introduced into the plasma flame, which vaporizes it and then condenses it to form the ceramic coating.

Recommended for you

Intellectual property in 3D printing

Apr 16, 2015

The implications of intellectual property in 3D printing have been outlined in two documents created for the UK government by Bournemouth University's Dinusha Mendis and Davide Secchi, and Phil Reeves of Econolyst Ltd.

World-record electric motor for aircraft

Apr 16, 2015

Siemens researchers have developed a new type of electric motor that, with a weight of just 50 kilograms, delivers a continuous output of about 260 kilowatts – five times more than comparable drive systems. ...

Space open for business, says Electron launch system CEO

Apr 15, 2015

Space, like business, is all about time and money, said Peter Beck, CEO of Rocket Lab, a US company with a New Zealand subsidiary. The problem, he added, is that, in cost and time, space has remained an incredibly ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.