Making ceramics that bend without breaking

Sep 26, 2013 by David Chandler
Demonstration of the shape memory effect in small-scale zirconia pillars. Credit: Science, 2013.

Ceramics are not known for their flexibility: they tend to crack under stress. But researchers from MIT and Singapore have just found a way around that problem—for very tiny objects, at least.

The team has developed a way of making minuscule objects that are not only flexible, but also have a "memory" for shape: When bent and then heated, they return to their original shapes. The surprising discovery is reported this week in the journal Science, in a paper by MIT graduate student Alan Lai, professor Christopher Schuh, and two collaborators in Singapore.

Shape-memory , which can bend and then snap back to their original configurations in response to a , have been known since the 1950s, explains Schuh, the Danae and Vasilis Salapatas Professor of Metallurgy and head of MIT's Department of Materials Science and Engineering. "It's been known in metals, and some polymers," he says, "but not in ceramics."

In principle, the of ceramics should make shape memory possible, he says—but the materials' brittleness and propensity for cracking has been a hurdle. "The concept has been there, but it's never been realized," Schuh says. "That's why we were so excited."

The key to shape-memory ceramics, it turns out, was thinking small.

The team accomplished this in two key ways. First, they created tiny ceramic objects, invisible to the naked eye: "When you make things small, they are more resistant to cracking," Schuh says. Then, the researchers concentrated on making the individual crystal grains span the entire small-scale structure, removing the crystal- where cracks are most likely to occur.

Those tactics resulted in tiny samples of ceramic material—samples with deformability equivalent to about 7 percent of their size. "Most things can only deform about 1 percent," Lai says, adding that normal ceramics can't even bend that much without cracking.

"Usually if you bend a ceramic by 1 percent, it will shatter," Schuh says. But these tiny filaments, with a diameter of just 1 micrometer—one millionth of a meter—can be bent by 7 to 8 percent repeatedly without any cracking, he says.

While a micrometer is pretty tiny by most standards, it's actually not so small in the world of nanotechnology. "It's large compared to a lot of what nanotech people work on," Lai says. As such, these materials could be important tools for those developing micro- and nanodevices, such as for biomedical applications. For example, shape-memory ceramics could be used as microactuators to trigger actions within such devices—such as the release of drugs from tiny implants.

Compared to the materials currently used in microactuators, Schuh says, the strength of the ceramic would allow it to exert a stronger push in a microdevice. "Microactuation is something we think this might be very good for," he says, because the has "the ability to push things with a lot of force—the highest on record" for its size.

The ceramics used in this research were made of zirconia, but the same techniques should apply to other ceramic materials. Zirconia is "one of the most well-studied ceramics," Lai says, and is already widely used in engineering. It is also used in fuel cells, considered a promising means of providing power for cars, homes and even for the electric grid. While there would be no need for elasticity in such applications, the material's flexibility could make it more resistant to damage.

The material combines some of the best attributes of metals and ceramics, the researchers say: Metals have lower strength but are very deformable, while ceramics have much greater strength, but almost no ductility—the ability to bend or stretch without breaking. The newly developed ceramics, Schuh says, have "ceramiclike strength, but metallike ductility."

Explore further: Atomic trigger shatters mystery of how glass deforms

More information: "Shape Memory and Superelastic Ceramics at Small Scales" Science, 2013.

Related Stories

New research may revolutionize ceramics manufacturing

Apr 07, 2010

Researchers from North Carolina State University have developed a new way to shape ceramics using a modest electric field, making the process significantly more energy efficient. The process should result in significant cost ...

Recommended for you

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

PointyHairedEE
1 / 5 (1) Sep 26, 2013
A few decades ago, I fooled some other engineering friends about the new reticulated auto glass. They all bit. It sure took long enough for our geniuses to come up with a contender.