Catastrophic collapse of ice lake created Aram Chaos on Mars

Sep 14, 2013
View of Aram Chaos with elevation map. Aram Chaos is an impact crateron Mars. It is connected to Ares Vallis by a 10 km wide and 2 km deep outflow channel.

Aram Chaos, the lumpy, bumpy floor of an ancient impact crater on Mars, formed as a result of catastrophic melting and outflow of a buried ice lake. A new study combines observations from satellite photos of the 280 kilometre wide and four kilometre deep crater plus models of the ice melting process and resulting catastrophic outflow. Manuel Roda has presented the results at the European Planetary Science Congress (EPSC) at UCL in London.

Chaotic terrains are enigmatic features, stretching up to hundreds of kilometres across, that are distinctive to Mars. The mechanism by which they formed has been poorly understood by scientists.

"About 3.5 billion years ago, the pristine Aram was partly filled with water ice that was buried under a two-kilometre thick layer of sediment. This layer isolated the ice from , but it gradually melted over a period of millions of years due to the heat released by the planet. The sediment overlying fluid water became unstable and collapsed," said Roda.

The resulting massive expulsion of a hundred thousand cubic kilometres of liquid water was four times the volume of Lake Baikal, the largest freshwater lake on Earth. The water carved a valley of 10 kilometres wide and 2 kilometres deep in about one month and a chaotic pattern of blocks was left in the Aram crater.

"An exciting consequence is that rock-ice units are possibly still present in the subsurface. These never achieved the melting conditions, or melted only a lower thin layer, insufficient to result in a full collapse event. Buried ice lakes testify of Mars rapidly turning into a cold, , but with lakes buried in the subsurface. These lakes could provide a potentially favourable site for life, shielded from hazardous UV radiation at the surface," said Roda.

Artist’s impression of the chaotization event in Aram Chaos Credits: Faculty of Geosciences, Utrecht University

Prospective view of Aram Valley inlet The Aram Valley is a deep (2 km) V-shaped valley which connects Aram Chaos to the Ares Vallis. Credit: google.com/mars (Vertical exaggeration 3)

Melting process Numerical modelling shows how the internal heat of the planet diffuses up into the crater with the ice layer. The 273K line indicates the melting point. After roughly 280 million years the sediment layer on the ice has become so thick that the water melts. The layer of rock on top of fluid water is unstable and would have broken up in reality.

The study was carried out by Roda and colleagues Tanja E. Zegers, Maarten G. Kleinhans and Rob Govers from Utrecht University and Jelmer H.P. Oosthoek of Jacobs University Bremen.

Explore further: Life found in the sediments of an Antarctic subglacial lake for the first time

Provided by European Planetary Science Congress

5 /5 (10 votes)

Related Stories

Mars: What lies beneath

Aug 13, 2013

There is much more to Mars than meets the eye. By using the radar on Mars Express, we can see several kilometres below the surface to see what lies beneath.

CryoSat maps largest-ever flood beneath Antarctica

Jul 02, 2013

(Phys.org) —ESA's CryoSat satellite has found a vast crater in Antarctica's icy surface. Scientists believe the crater was left behind when a lake lying under about 3 km of ice suddenly drained.

Explosive crater twins on Mars

Apr 12, 2013

(Phys.org) —Dramatic underground explosions, perhaps involving ice, are responsible for the pits inside these two large martian impact craters, imaged by ESA's Mars Express on 4 January.

Recommended for you

Australian amateur Terry Lovejoy discovers new comet

9 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

Students see world from station crew's point of view

Aug 19, 2014

NASA is helping students examine their home planet from space without ever leaving the ground, giving them a global perspective by going beyond a map attached to a sphere on a pedestal. The Sally Ride Earth ...

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

User comments : 0