NASA sees 10-mile-high thunderstorms in Hurricane Henriette

Aug 07, 2013
TRMM is able to measure rainfall occurring in a storm from space. Rainfall is derived from TRMM's Microwave Imager and Precipitation Radar instruments. TRMM's PR instrument measured rain falling at the rate of over 55.46 mm (~2.2 inches) per hour a towering thunderstorm near Henriette's center. Credit: SSAI/NASA, Hal Pierce

NASA's TRMM satellite peered into the clouds of Hurricane Henriette as is continues moving through the Eastern Pacific Ocean, and found powerful thunderstorms that topped 10 miles high.

The higher the thunderstorms are, the more powerful the uplift in the air, and more powerful the thunderstorms. Thunderstorms that reach 10 miles high, like some of the ones seen in Hurricane Henriette tend to drop heavy rainfall, and NASA's Tropical Rainfall Measuring Mission or TRMM satellite confirmed that.

The TRMM satellite flew over the eastern Pacific Ocean on August 6, 2013 at 0233 UTC (~5:33 p.m. Hawaii local time) collecting data for low sun angle views of Hurricane Henriette. A visible/infrared image created by TRMM data showed shadows cast by towering thunderstorms on the northeastern side of Henriette's eye wall.

TRMM is able to measure rainfall occurring in a storm from its orbit in space. Rainfall is derived from TRMM's Microwave Imager and Precipitation Radar instruments. TRMM's PR instrument measured rain falling at the rate of over 55.46 mm (~2.2 inches) per hour a towering thunderstorm near Henriette's center.

This video is not supported by your browser at this time.
This 3-D image (looking toward the east) from TRMM PR data reveals that towering storms in the northeastern side of Henriette's eye were reaching height of almost 16.75km (~10.41 miles). Credit: SSAI/NASA, Hal Pierce

At NASA's Goddard Space Flight Center in Greenbelt, Md. the TRMM team used the satellite's data to create 3-D images and animations. One 3-D image looking toward the east from TRMM PR data revealed that towering storms in the northeastern side of Henriette's eye were reaching heights of almost 16.75km (~10.41 miles). This kind of chimney cloud, also called a "hot tower" (as it releases a huge quantity of latent heat by condensation) can play a part in the formation or intensification of tropical cyclones. Intense rainfall in Henriette's eye wall was returning values greater than 48.7dBZ to the TRMM satellite.

At 11 a.m. EDT on Aug. 7, Hurricane Henriette's were near 85 mph/140 kph, and little change in strength is expected today, while weakening is expected to begin tomorrow, Aug. 8. The center of Hurricane Henriette was located near latitude 16.2 north and longitude 134.9 west, about 1,350 miles/2,170 km east of Hilo, Hawaii. Henriette is moving toward the west-northwest near 10 mph/17 kph and is expected to continue in that direction before turning west tomorrow, Aug. 8.

This video is not supported by your browser at this time.
TRMM is able to measure rainfall occurring in a storm from its orbit in space. TRMM's measured rain falling at the rate of over 55.46 mm (~2.2 inches) per hour a towering thunderstorm near Henriette's center. Credit: SSAI/NASA, Hal Pierce

This 3-D image (looking toward the east) from TRMM PR data reveals that towering storms in the northeastern side of Henriette's eye were reaching height of almost 16.75km (~10.41 miles).

Explore further: NASA balloons begin flying in Antarctica for 2014 campaign

add to favorites email to friend print save as pdf

Related Stories

NASA sees little rainfall in Tropical Depression Flossie

Jul 30, 2013

Tropical Storm Flossie weakened as it interacted with the Hawaiian Islands and became a depression. NASA's TRMM satellite saw mostly light rain and one isolated area of heavy rainfall within the storm after ...

Recommended for you

Scientists make strides in tsunami warning since 2004

Dec 19, 2014

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

Dec 19, 2014

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.