New nanoparticles make solar cells cheaper to manufacture

Aug 29, 2013
Nanoparticles made by University of Alberta researchers from Earth-abundant elements phosphorus and zinc, means solar cells can be made more affordably. Credit: University of Alberta

University of Alberta researchers have found that abundant materials in the Earth's crust can be used to make inexpensive and easily manufactured nanoparticle-based solar cells.

The U of A discovery, several years in the making, is an important step forward in making solar power more accessible to parts of the world that are off the traditional or face high power costs, such as the Canadian North, said researcher Jillian Buriak, a chemistry professor and senior research officer of the National Institute for Nanotechnology, based on the U of A campus.

Buriak and her team have designed nanoparticles that absorb light and from two very common elements: phosphorus and zinc. Both materials are more plentiful than scarce materials such as cadmium and free from manufacturing restrictions imposed on lead-based nanoparticles.

"Half the world already lives off the grid, and with demand for electrical power expected to double by the year 2050, it is important that like solar power are made more affordable by lowering the costs of manufacturing," Buriak said.

Her team's research supports a promising approach of making solar cells cheaply using mass manufacturing methods like roll-to-roll printing (as with newspaper presses) or spray-coating (similar to automotive painting). "Nanoparticle-based 'inks' could be used to literally paint or print solar cells or precise compositions," Buriak said.

The team was able to develop a synthetic method to make zinc phosphide nanoparticles and demonstrated that the particles can be dissolved to form an ink and processed to make that are responsive to light.

Buriak and her team are now experimenting with the , spray-coating them onto large to test their efficiency. The team has applied for a provisional patent and has secured funding to enable the next step to scale-up manufacture.

The research, which was supported by the Natural Sciences and Engineering Research Council of Canada, is published in the latest issue of ACS Nano.

Explore further: New technology to enable development of 4G solar cells

Related Stories

New technology to enable development of 4G solar cells

Jul 29, 2013

Professor Ravi Silva of the University of Surrey's Advanced Technology Institute has identified the range of combinations of organic and inorganic materials that will underpin new 4th generation solar cell technology – ...

Researchers develop paint-on solar cells (w/ video)

Dec 21, 2011

(PhysOrg.com) -- Imagine if the next coat of paint you put on the outside of your home generates electricity from light—electricity that can be used to power the appliances and equipment on the inside.

Nanoparticle opens the door to clean-energy alternatives

Jun 13, 2013

(Phys.org) —Cheaper clean-energy technologies could be made possible thanks to a new discovery. Research team members led by Raymond Schaak, a professor of chemistry at Penn State University, have found ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories