Understanding interface properties of graphene paves way for new applications

Aug 05, 2013

Researchers from North Carolina State University and the University of Texas have revealed more about graphene's mechanical properties and demonstrated a technique to improve the stretchability of graphene – developments that should help engineers and designers come up with new technologies that make use of the material.

Graphene is a promising material that is used in technologies such as transparent, flexible electrodes and . And while engineers think graphene holds promise for additional applications, they must first have a better understanding of its mechanical properties, including how it works with other materials.

"This research tells us how strong the is between graphene and a stretchable substrate," says Dr. Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and co-author of a paper on the work. "Industry can use that to design new flexible or stretchable electronics and nanocomposites. For example, it tells us how much we can deform the material before the interface between graphene and other materials fails. Our research has also demonstrated a useful approach for making graphene-based, stretchable devices by 'buckling' the graphene."

The researchers looked at how a graphene monolayer – a layer of graphene only one atom thick – interfaces with an elastic substrate. Specifically, they wanted to know how strong the bond is between the two materials because that tells engineers how much strain can be transferred from the substrate to the graphene, which determines how far the graphene can be stretched.

The researchers applied a monolayer of graphene to a substrate, and then stretched the substrate. They used a technique to monitor the strain at various points in the graphene. Strain is a measure of how far a material has stretched.

Initially, the graphene stretched with substrate. However, while the substrate continued to stretch, the graphene eventually began to stretch more slowly and slide on the surface instead. Typically, the edges of the monolayer began to slide first, with the center of the monolayer stretching further than the edges.

"This tells us a lot about the interface properties of the graphene and substrate," Zhu says. "For the substrate used in this study, polyethylene terephthalate, the edges of the graphene monolayer began sliding after being stretched 0.3 percent of its initial length. But the center continued stretching until the monolayer had been stretched by 1.2 to 1.6 percent."

The researchers also found that the graphene monolayer buckled when the elastic substrate was returned to its original length. This created ridges in the graphene that made it more stretchable because the material could stretch out and back, like the bellows of an accordion. The technique for creating the buckled material is similar to one developed by Zhu's lab for creating elastic conductors out of carbon nanotubes.

Explore further: Understanding the source of extra-large capacities in promising Li-ion battery electrodes

More information: Advanced Functional Materials DOI: 10.1002/adfm.201301999

Related Stories

Playing Lego on an atomic scale

Jul 25, 2013

In a perspective review written for Nature, Sir Andre and Dr Irina Grigorieva, from The University of Manchester, discuss how layered materials can be split into isolated atomic planes and then reassembled ...

Diamonds, nanotubes find common ground in graphene

May 28, 2013

What may be the ultimate heat sink is only possible because of yet another astounding capability of graphene. The one-atom-thick form of carbon can act as a go-between that allows vertically aligned carbon ...

Recommended for you

Tough foam from tiny sheets

6 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0