Novel approach to gene regulation can activate multiple genes simultaneously

Aug 27, 2013

By creating a powerful new gene regulation system called CRISPR-on, Whitehead Institute researchers now have the ability to increase the expression of multiple genes simultaneously and precisely manipulate each gene's expression level. The system is effective in both mouse and human cells as well as in mouse embryos.

"CRISPR-on is a tool that will be very useful for studying many biological processes, particularly for studying and ," says Whitehead Founding Member Rudolf Jaenisch. "In contrast to RNA interference, which is commonly used to inactivate gene activity, the CRISPR-on system allows activation of cellular genes. The technology substantially expands our ability to change gene expression in and animals.."

The system, called CRISPR-on, is a modified version of CRISPR/Cas (for "clustered regularly interspaced short palindromic repeat/CRISPR associated"), which taps into a bacterial defense system against viral intruders. CRISPR/Cas relies on an enzyme, Cas9, which cuts DNA at locations specified by single guide RNAs (sgRNAs). For CRISPR-on, the Whitehead team modified the Cas9 enzyme by eliminating its ability to cleave DNA and adding a transcription activation domain. The resulting enzyme can increase gene expression without permanently changing the DNA.

The new system is described this week in the journal Cell Research.

CRISPR-on's ability to activate only the desired genes at varying levels could be used to help scientists improve our understanding of transcription network underlying a variety of diseases and potentially find new ways to treat them.

"Many diseases, especially complex diseases, involve multiple genes, and this system could be used therapeutically to target and activate multiple genes together and rescue these ," says Albert Cheng, a graduate student in the Jaenisch lab and co-author of the Cell Research paper. "Or we could use it to study the gene networks in diseases and get a better understanding of how those diseases work."

So far, the researchers have used CRISPR-on to activate up to three native genes concurrently in .

"I think we need to do more work to see if there are any limitations to the number of genes CRISPR-on can activate at a time," says Haoyi Wang, a co-author and postdoctoral researcher in the Jaenisch lab. "We'd like to see if we can get data on activating 10 or more genes, to see if there is an upper limit to what this system can do."

Explore further: Tricking plants to see the light may control the most important twitch on Earth

More information: "RNA-guided multiplexed endogenous gene activation" Cell Research, online August 27, 2013.

Related Stories

The many faces of the bacterial defense system

Apr 30, 2013

Even bacteria have a kind of "immune system" they use to defend themselves against unwanted intruders – in their case, viruses. Scientists at the Helmholtz Center for Infection Research (HZI) in Braunschweig, ...

Bacterial security agents go rogue

Apr 14, 2013

CRISPR, a system of genes that bacteria use to defend themselves against viruses, has been found to be involved in helping some bacteria evade the mammalian immune system. The results are scheduled for publication Sunday, ...

Research update: Genome editing becomes more accurate

Jul 22, 2013

Earlier this year, MIT researchers developed a way to easily and efficiently edit the genomes of living cells. Now, the researchers have discovered key factors that influence the accuracy of the system, an ...

Recommended for you

Getting a jump on plant-fungal interactions

Jul 29, 2014

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0