Valley networks suggest ancient snowfall on Mars

Jul 23, 2013
Valley networks on Mars are a good sign that water once flowed on the surface. Researchers from Brown University have found that some of these valleys appear to have been formed by orographic precipitation -- rain or snow that falls when moist air is pushed upward by mountain ridges or raised crater rims. The findings suggest that at least some of the water on ancient Mars fell from the atmosphere, rather than bubbling up from the subsurface. The image, taken by the Mars Reconnaissance Orbiter, shows a valley network in a region called Warrego Valles. Credit: NASA/JPL-Caltech/Univ. of Arizona

Researchers at Brown University have shown that some Martian valleys appear to have been caused by runoff from orographic precipitation—moisture carried part of the way up a mountain and deposited on the slopes.

Valley networks branching across the Martian surface leave little doubt that water once flowed on the Red Planet. But where that ancient water came from—whether it bubbled up from underground or fell as rain or snow—is still debated by scientists. A new study by researchers at Brown University puts a new check mark in the precipitation column.

The study finds that water-carved valleys at four different locations on Mars appear to have been caused by runoff from orographic precipitation—snow or rain that falls when moist prevailing winds are pushed upward by mountain ridges. The new findings are the most detailed evidence yet of an orographic effect on ancient Mars and could shed new light on the planet's early climate and atmosphere.

A paper describing the work has been accepted by Geophysical Research Letters and published online in June.

Kat Scanlon, a graduate student at Brown, led the research and is well-acquainted with the orographic effect. She did graduate work in meteorology in Hawaii, which is home to a quintessential orographic pattern. Moist tropical winds from the east are pushed upward when they hit the mountains of Hawaii's big island. The winds lack the kinetic energy to reach the mountain summit, so they dump their moisture on the eastern side of the island, making parts of it a tropical jungle. The western side, in contrast, is nearly a desert because it sits in a rain shadow cast by the mountain peak.

Valley networks suggest ancient snowfall on Mars
Mars from the Odyssey spacecraft Water-carved valleys on Mars appear to have been caused by runoff from precipitation, likely meltwater from snow. Early Martian precipitation would have fallen on mountainsides and crater rims. Credit: NASA

Scanlon thought similar orographic patterns might have been at play on early Mars and that the valley networks might be an indicator. "That's what immediately came to mind in trying to figure out if these valleys on Mars are precipitation related," she said.

The researchers, including Jim Head, professor of geological sciences, started by identifying four locations where valley networks were found along tall mountain ridges or raised crater rims. To establish the direction of the prevailing winds at each location, the researchers used a newly developed general circulation model (GCM) for Mars. The model simulates air movement based on the gas composition scientists think was present in the early Mars atmosphere. Next, the team used a model of orographic precipitation to determine where, given the prevailing winds from the GCM, precipitation would be likely to fall in each of the study areas.

Their simulations showed that precipitation would have been heaviest at the heads of the densest valley networks. "Their drainage density varies in the way you would expect from the complex response of precipitation to topography," Scanlon said. "We were able to confirm that in a pretty solid way."

The atmospheric parameters used in the GCM are based on a new comprehensive general circulation model that predicts a cold climate, so the precipitation modeled in this study was snow. But this snow could have been melted by episodic warming conditions to form the valley networks, and indeed some precipitation could have been rain during this period, Scanlon and Head say.

"The next step is to do some snowmelt modeling," she said. "The question is how fast can you melt a giant snowbank. Do you need rain? Is it even possible to get enough discharge [to carve the valleys] with just the snowmelt?"

With the knowledge from this study that precipitation was important in carving the valleys, the answers to those additional questions could provide important insight into the climate on Mars billions of years ago.

Explore further: Magnitude-7.2 earthquake shakes Mexican capital

Related Stories

Progressively wetter in Norway

Feb 27, 2013

Climate change will make life wetter for most Norwegians in the years to come. A rainier climate is expected nationwide, with the possible exception of southern Norway in the summers.

Lake-effect snow sometimes needs mountains

Feb 19, 2013

University of Utah researchers ran computer simulations to show that the snow-producing "lake effect" isn't always enough to cause heavy snowfall, but that mountains or other surrounding topography sometimes ...

Recommended for you

Magnitude-7.2 earthquake shakes Mexican capital

Apr 18, 2014

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1 / 5 (4) Jul 24, 2013
Valley networks branching across the Martian surface leave little doubt that water once flowed on the Red Planet.


When one has a narrow myopic view of reality, one can limit his options for finding answers. Seems the court of opinion has settled this "science".

More news stories

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

European climate at the +2 C global warming threshold

A global warming of 2 C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Poll: Big Bang a big question for most Americans

Few Americans question that smoking causes cancer. But they have more skepticism than confidence in global warming, the age of the Earth and evolution and have the most trouble believing a Big Bang created the universe 13.8 ...