Artificial muscle contracts and expands with changes in humidity

July 24, 2013

(Phys.org) —A small plastic strip can do "weight training" to effortlessly lifts many times its own weight, driven by cyclic changes in the humidity of the surrounding air. This strong "artificial arm" is based on the interaction between microgels and a layer of polycations that shrinks as it dries, according to a report presented by Canadian researchers in the journal Angewandte Chemie.

Polymer materials that perform work in response to a chemical or physical stimulus are often called "". These are very interesting for a number of applications, including controlling the movements of "gentler" robots. All components of such robots need to be soft and flexible so that they don't damage delicate objects and can move in tight spaces.

The arm developed by researchers working with Michael J. Serpe at the University of Alberta is constructed in the following way: A strip of a is coated with chromium and gold, followed by a microgel . Microgels are cross-linked polymers that swell up with a solvent such as water to form gel particles with diameters of up to a few micrometers. The Canadian researchers used negatively charged microgels made from poly(N-isopropylacrylamide) and . A solution containing polycations is deposited onto the gel. These act as positive counterions.

When this system dries out, the between the hydrocarbon regions of the polymer cations increase considerably, which causes the layer containing the polymer cations to shrink. Because the electrostatic attraction between the polycations and the microgel is very strong and the microgel layer is very firmly attached to the coated sheet of plastic, the ends of the strip bend upwards and the system curls up. When the is increased, it stretches back out.

The researchers hung one of their strips up in a chamber with controlled humidity conditions. By changing the humidity, they were able to make their artificial arm "grip" the handle of a small package and to "hold on" as it rose up. In another experiment, they hung a chain of paperclips to the end of one extended mini-arm. Cyclic changes in the humidity caused the arm to raise and lower this weight, which was 14 times as heavy as the arm itself, like a miniature weight-lifting exercise. "Given that a human arm is approximately 6.5 % of the total mass of the human body, this is equivalent to a 75 kg human with a single arm that is capable of lifting 68.3 kg," Serpe says to illustrate the strength of his miniature arm. Even hanging 52.2 g of weight from a curled-up arm was not enough to stretch it out. If a 75 kg human wanted to achieve a similar feat, he would have to keep his arm bent even with 1280 kg pulling on it.

Explore further: Whether grasping Easter eggs or glass bottles -- this robotic hand uses tact

More information: Angewandte Chemie International Edition, DOI: 10.1002/anie.201303475

Related Stories

Intensive glycemic control linked to highest weight gains

March 21, 2013

(HealthDay)—Weight gain is higher in patients with type 2 diabetes mellitus (T2DM) who receive more intensive glycemic control treatment and is associated with a reduction of A1C from baseline, according to research published ...

Microgels' behaviour under scrutiny

April 30, 2013

Being a physicist offers many perks. For one, it allows an understanding of the substances ubiquitous in everyday industrial products such as emulsions, gels, granular pastes or foams. These are known for their intermediate ...

ARM chip makers set to reach 3GHz next year

July 10, 2013

(Phys.org) —ARM chip makers TSMC and GlobalFoundries have revealed that they plan to release ARM processor chips capable of running at 3GHz sometime next year. Such chips will almost certainly be welcomed with open arms ...

Recommended for you

Isolation of Fe(IV) decamethylferrocene salts

August 29, 2016

(Phys.org)—Ferrocene is the model compound that students often learn when they are introduced to organometallic chemistry. It has an iron center that is coordinated to the π electrons in two cyclopentadienyl rings. (C5H5- ...

Bringing artificial enzymes closer to nature

August 29, 2016

Scientists at the University of Basel, ETH Zurich, and NCCR Molecular Systems Engineering have developed an artificial metalloenzyme that catalyses a reaction inside of cells without equivalent in nature. This could be a ...

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.