Water isotopes leave fingerprints for climate scientists

Jun 25, 2013 by Miles O'brien
Water isotopes leave fingerprints for climate scientists
A photo taken on a clear day, April 6, 2013, from the top of the Boulder Atmospheric Observatory. Credit: Aleya Kaushik

University of Colorado meteorologist David Noone and his team are working to understand how water moves around the planet. With support from the National Science Foundation (NSF), the project team observes and analyzes the stable isotope composition of water vapor and precipitation, primarily at the 300-meter (984-foot) Boulder Atmospheric Observatory tower.

The measurements are made using an technology which has only recently become available, and which allows continuous in situ observations to be made on a practical basis. The ratio of heavier to lighter isotopes in water vapor contains information including the source region for the water vapor that falls as rain, which can be used to determine the extent to which rainwater comes directly from the ocean or from evaporation and over land.

This video is not supported by your browser at this time.

Water isotopes leave fingerprints for climate scientists
The HIAPER Pole-to-Pole Observation (HIPPO) project has generated the first detailed mapping--both vertically and across latitudes--of the global distribution of greenhouse gases, black carbon and related chemical species in the atmosphere. Credit: Animations courtesy of R. Bradley Pierce, NOAA/NESDIS/STAR

"David's work shows that can tell us a great deal about the sources and pathways of the rainwater that's so critical for us and our environment," says Eric DeWeaver, a program director in the Atmospheric and Geospace Sciences Division of the Directorate for Geosciences. "This is exciting research and it's also a great example of participatory science, in which can make an important contribution to the research while at the same time learning about the hydrological cycle."

Explore further: Measuring isotope variability in water vapor over Southern California

add to favorites email to friend print save as pdf

Related Stories

Oxygen isotopes improve weather predictability in Niger

May 17, 2012

For the African nation of Niger, the effect of seasonal atmospheric variability on the weather is poorly understood. Because most residents rely on local agriculture, improving the predictability of seasonal weather and precipitation ...

Researchers discover plants are enormous water users

Apr 04, 2013

(Phys.org) —A new study published today in Nature by researchers at the University of New Mexico indicates the immense amount of fresh water used by plants and its movement during their life cycle has si ...

For first time, entire thermal infrared spectrum observed

Jun 15, 2012

The driving mechanism of the greenhouse effect, and the underpinning of modern anthropogenic warming, is the absorption, emission, and transmission of infrared radiation by atmospheric gases. The heat-trapping ability of ...

Recommended for you

NASA sees last vestiges of Tropical Depression Jack

7 hours ago

Tropical Cyclone Jack had weakened to a tropical depression when NASA and JAXA's Tropical Rainfall Measuring Mission (TRMM) satellite passed above on April 22, 2014 at 1120 UTC/7:20 a.m. EDT.

New discovery helps solve mystery source of African lava

11 hours ago

Floods of molten lava may sound like the stuff of apocalyptic theorists, but history is littered with evidence of such past events where vast lava outpourings originating deep in the Earth accompany the breakup ...

Climate change likely to make Everest even riskier

11 hours ago

Climbing to the roof of the world is becoming less predictable and possibly more dangerous, scientists say, as climate change brings warmer temperatures that may eat through the ice and snow on Mount Everest.

User comments : 0

More news stories