Researchers find epigenetic factor in monogamy for voles

Jun 03, 2013 by Bob Yirka report
Male and female prairie voles develop strong partner preference after mating and stay together for life. After developing the strong bond, they become aggressive and exhibit mate-guarding towards intruders of opposite sex. Finally, after they have pups, both mom and dad participate equally in taking care of them. Credit: Dr. Zuoxin Wang

(Phys.org) —A team of researchers at Florida State University has found an epigenetic factor involved in voles' lifelong pair bonding. In their paper published in the journal Nature Neuroscience, the researchers describe how they found the act of mating—along with time spent alone—led to permanent brain changes in the voles involved in the study.

Voles are famously monogamous, leading some to note that switching the letters around in their name spells the word "love." But the factors that lead to such pair bonding have remained somewhat of a mystery. Researchers have known for some time that vole pairs have higher levels of neurotransmitters— and oxytocin—in their brains, but until now, haven't been able to explain why. In this new study, the researchers have found that the act of mating, combined with time spent along together, causes permanent changes to chromosomes that lead to changes in genes that are responsible for creating monogamous behavior.

Suspecting an epigenetic factor ( to chromosomes that impact how genes are transcribed) was at play, the researchers tested captive voles in a variety of circumstances for neurotransmitter levels. Some voles were housed together for six hours but weren't allowed to mate—others were housed together long enough to encourage mating (typically a full day). Some of the voles that were not allowed to mate also had the trichostatin A (TSA) injected into a part of their brain—the —it's known to play a part in their monogamous behavior. Other voles without injections were allowed to behave naturally.

In studying the results of their experiments, the researchers found that voles housed for just six hours with that also received TAS injections, became bonded mates regardless of whether they actually mated or not—and genes for the had been transcribed, which meant the changes were permanent. Subsequent testing of such pairs showed the bonded animals exhibited the same raised levels of neurotransmitters as those who mated naturally in the wild. They also found that voles being housed together was just as important as the chemical injection—those housed for shorter times, despite the dose of TSA, did not bond. This, they say, suggests that the bonding that occurs has more than one component. Spending time together before mating, they note, causes some sort of mental imprinting that when combined with raised neurotransmitter levels, causes the voles to want to mate with just their partner for the rest of their lives.

Explore further: Male monkey filmed caring for dying mate (w/ Video)

More information: Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles, Nature Neuroscience (2013) doi:10.1038/nn.3420

Abstract
In the socially monogamous prairie vole (Microtus ochrogaster), mating induces enduring pair-bonds that are initiated by partner preference formation and regulated by a variety of neurotransmitters, including oxytocin, vasopressin and dopamine. We examined potential epigenetic mechanisms mediating pair-bond regulation and found that the histone deacetylase inhibitors sodium butyrate and trichostatin A (TSA) facilitated partner preference formation in female prairie voles in the absence of mating. This was associated with a specific upregulation of oxytocin receptor (OTR, oxtr) and vasopressin V1a receptor (V1aR, avpr1a) in the nucleus accumbens (NAcc), through an increase in histone acetylation at their respective promoters. Furthermore, TSA-facilitated partner preference was prevented by OTR or V1aR blockade in the NAcc. Notably, mating-induced partner preference triggered the same epigenetic regulation of oxtr and avpr1a gene promoters as TSA. These observations indicate that TSA and mating facilitate partner preference through epigenetic events, providing, to the best of our knowledge, the first direct evidence for epigenetic regulation of pair-bonding.

Related Stories

Steady relationships reduce amphetamine's rewarding effects

Jun 01, 2011

Long-term relationships make the commonly abused drug amphetamine less appealing, according to a new animal study in the June 1 issue of The Journal of Neuroscience. The findings suggest that social bonds formed during adulth ...

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

3 hours ago

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

20 hours ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

23 hours ago

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

23 hours ago

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

LADEE mission ends with planned lunar impact

(Phys.org) —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface ...