How did a third radiation belt appear in the Earth's upper atmosphere?

June 20, 2013
NASA's Van Allen probes. Credit: JHU/APL

(Phys.org) —Since the discovery of the Van Allen radiation belts in in the Earth's upper atmosphere in 1958, space scientists have believed that these belts consisted of two doughnut-shaped rings of highly charged particles—an inner ring of high-energy electrons and energetic positive ions, and an outer ring of high-energy electrons.

However, in February of this year, a team of scientists reported in the journal Science the surprising discovery of a previously unknown third radiation ring. This narrow ring had briefly circled the Earth between the inner and outer rings in September 2012 and then almost completely disappeared.

How did this temporary radiation belt appear and dissipate?

In new research, the radiation belt group in the UCLA Department of Atmospheric and Oceanic Sciences explains the development of this third belt and its decay over a period of slightly more than four weeks. The research is available in the online edition of the journal Geophysical Research Letters and will be published in an upcoming print edition.

By performing a "quantitative treatment of the scattering of relativistic electrons by electromagnetic whistler-mode waves inside the dense plasmasphere," the investigators were able to account for the "distinctively slow decay of the injected flux" and demonstrate why this unusual third is observed only at energies above 2 mega-electron-volts.

Understanding the processes that control the formation and ultimate loss of such relativistic electrons is a primary science objective of the NASA Van Allen Probe Mission and has important practical applications, because the enormous amounts of radiation the Van Allen belts generate can pose a significant hazard to satellites and spacecraft, as well to astronauts performing activities outside a spacecraft.

The current research was funded by the NASA, which launched the twin Van Allen probes in the summer of 2012.

Explore further: Third radiation belt can wrap around Earth, probes reveal

More information: www.nasa.gov/mission_pages/rbsp/main/index.html

Related Stories

Third radiation belt can wrap around Earth, probes reveal

February 28, 2013

With the flip of a switch, a pair of instruments designed and built by the University of Colorado Boulder and flying onboard twin NASA space probes have forced the revision of a 50-year-old theory about the structure of the ...

NASA's BARREL mission launches 20 balloons

May 21, 2013

(Phys.org) —In Antarctica in January, 2013 – the summer at the South Pole – scientists released 20 balloons, each eight stories tall, into the air to help answer an enduring space weather question: when the giant radiation ...

20 NASA balloons studying the radiation belts

February 4, 2013

In the bright, constant sun of the Antarctic summer, a NASA-funded team is launching balloons. There are twenty of these big, white balloons, each of which sets off on a different day for a leisurely float around the South ...

Tiny CREPT instrument to study the radiation belts

February 14, 2013

A smaller version of an instrument now flying on NASA's Van Allen Probes has won a coveted spot aboard an upcoming NASA-sponsored Cubesat mission—the perfect platform for this pint-size, solid-state telescope.

The radiation belt storm probes

August 31, 2012

(Phys.org)—Since the dawn of the Space Age, mission planners have tried to follow one simple but important rule: Stay out of the van Allen Belts. The two doughnut-shaped regions around Earth are filled with "killer electrons," ...

Recommended for you

Hubble catches a transformation in the Virgo constellation

December 9, 2016

The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of over 1300 galaxies called the Virgo Cluster. One particular member of ...

Khatyrka meteorite found to have third quasicrystal

December 9, 2016

(Phys.org)—A small team of researchers from the U.S. and Italy has found evidence of a naturally formed quasicrystal in a sample obtained from the Khatyrka meteorite. In their paper published in the journal Scientific Reports, ...

Scientists sweep stodgy stature from Saturn's C ring

December 9, 2016

As a cosmic dust magnet, Saturn's C ring gives away its youth. Once thought formed in an older, primordial era, the ring may be but a mere babe – less than 100 million years old, according to Cornell-led astronomers in ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tangent2
2.3 / 5 (6) Jun 20, 2013
Gotta love how this article doesn't even mention the HOW this happened. I had to go to the actual archive article to find out, but I'll save the rest of you some time of digging through the article:

"The ring formed on September 3, 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on October 1."

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.