Ambitious project 'unifies' laser and high-energy physics

Jun 05, 2013
Ambitious project 'unifies' laser and high-energy physics
Credit: CERN

An international team of experts are developing a revolutionary laser system by investigating the use of fibre lasers in ground-breaking particle accelerator technologies, such as the Large Hadron Collider (LHC), which is considered by scientists as one of the great engineering milestones of mankind.

The ICAN ('International Coherent Amplification Network') project, which has received EU-funding of half a million euros, is a novel laser concept for high- energy particle acceleration. ICAN team members include experts in , technology and industry, astronomy and manufacturing.

Four renowned laboratories are also involved: ORC at the University of Southampton, UK; École Polytechnique, France The Fraunhofer Institute for and Precision Engineering (Fraunhofer IOF) Germany; and CERN, the European Organisation for Nuclear Research, Switzerland (and home to the LHC). It also involves a large number of worldwide partners from the laser, fibre and high-energy physics communities and industry.

Together they will set out a new laser system composed of massive arrays of thousands of fibre lasers, for both fundamental research at laboratories and more applied tasks, such as and nuclear transmutation.

The project is led by Professor Gérard Mourou from École Polytechnique who is regarded as a pioneer in the field of ultrafast lasers. He says 'ICAN is a watershed project because it unifies and high-energy physics communities. 'I believe that ICAN is a bold and ambitious project, which illustrates the EU flagship innovative spirit.'

Lasers can provide, in a very short time (measured in femtoseconds), bursts of energy, and equivalent to a thousand times the power of all the power plants in the world.

Professor Mourou continues: 'One important application has been the possibility to accelerate particles to high energy over very short distances measured in centimetres rather than kilometres, as it is the case today with conventional technology. This feature is of paramount importance when we know that today high-energy physics is limited by the prohibitive size of accelerators (tens of kilometres) and costs billions of euros. Reducing the size and cost by a large amount is critical for the future of high-energy physics.'

One significant societal application of such a source is to transmute the waste products of nuclear reactors, which at present have half-lives of hundreds of thousands of years, into materials with much shorter lives (down to tens of years). This would dramatically transform the problem of nuclear waste management.

Explore further: And so they beat on, flagella against the cantilever

add to favorites email to friend print save as pdf

Related Stories

Cool electron acceleration

Jun 04, 2013

Physicists from the Max-Planck-Institute of Quantum Optics produced electron pulses from a laser accelerator whose individual particles all have nearly the same, tuneable energy.

Recommended for you

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Moebius
1 / 5 (3) Jun 05, 2013
This gets my vote for most uninformative article of the day.
antialias_physorg
4 / 5 (4) Jun 05, 2013
What's so uninformative about it? They want to use lasers instead of accelerators to push particles to very high speeds.

How this is going to transmute nuclear waste (without consuming vastly more power in the process than the spent fuel rods produced in the first place - i.e. in a way that actually makes sense) is a bit of a poser, though.

which at present have half-lives of hundreds of thousands of years, into materials with much shorter lives (down to tens of years).

But which would also mean that the stuff becomes a lot more radioactive - i.e. even more difficult and dangerous to store.