Water-rock reaction may provide enough hydrogen 'food' to sustain life in ocean's crust or on Mars

May 30, 2013
Mars. Image: NASA

A chemical reaction between iron-containing minerals and water may produce enough hydrogen "food" to sustain microbial communities living in pores and cracks within the enormous volume of rock below the ocean floor and parts of the continents, according to a new study led by the University of Colorado Boulder.

The findings, published in the journal Nature Geoscience, also hint at the possibility that -dependent life could have existed where iron-rich igneous rocks on Mars were once in contact with water.

Scientists have thoroughly investigated how rock-water reactions can produce hydrogen in places where the temperatures are far too hot for living things to survive, such as in the rocks that underlie on the floor of the Atlantic Ocean. The hydrogen gases produced in those rocks do eventually feed , but the communities are located only in small, cooler oases where the vent fluids mix with seawater.

The new study, led by CU-Boulder Research Associate Lisa Mayhew, set out to investigate whether hydrogen-producing reactions also could take place in the much more abundant rocks that are infiltrated with water at temperatures cool enough for life to survive.

"Water-rock reactions that produce are thought to have been one of the earliest sources of energy for ," said Mayhew, who worked on the study as a doctoral student in CU-Boulder Associate Professor Alexis Templeton's lab in the Department of .

"However, we know very little about the possibility that hydrogen will be produced from these reactions when the temperatures are low enough that life can survive. If these reactions could make enough hydrogen at these low temperatures, then microorganisms might be able to live in the rocks where this reaction occurs, which could potentially be a huge subsurface microbial habitat for hydrogen-utilizing life."

When igneous rocks, which form when magma slowly cools deep within the Earth, are infiltrated by ocean water, some of the minerals release unstable atoms of iron into the water. At high temperatures—warmer than 392 degrees Fahrenheit—scientists know that the unstable atoms, known as reduced iron, can rapidly split water molecules and produce hydrogen gas, as well as new minerals containing iron in the more stable, oxidized form.

Mayhew and her co-authors, including Templeton, submerged rocks in water in the absence of oxygen to determine if a similar reaction would take place at much lower temperatures, between 122 and 212 degrees Fahrenheit. The researchers found that the rocks did create hydrogen—potentially enough hydrogen to support life.

To understand in more detail the chemical reactions that produced the hydrogen in the lab experiments, the researchers used "synchrotron radiation"—which is created by electrons orbiting in a manmade storage ring—to determine the type and location of iron in the rocks on a microscale.

The researchers expected to find that the reduced iron in minerals like olivine had converted to the more stable oxidized state, just as occurs at higher temperatures. But when they conducted their analyses at the Stanford Synchrotron Radiation Lightsource at Stanford University, they were surprised to find newly formed oxidized iron on "spinel" minerals found in the rocks. Spinels are minerals with a cubic structure that are highly conductive.

Finding oxidized iron on the spinels led the team to hypothesize that, at low temperatures, the conductive spinels were helping facilitate the exchange of electrons between reduced iron and water, a process that is necessary for the iron to split the water molecules and create the hydrogen gas.

"After observing the formation of oxidized iron on spinels, we realized there was a strong correlation between the amount of hydrogen produced and the volume percent of spinel phases in the reaction materials," Mayhew said. "Generally, the more spinels, the more hydrogen."

Not only is there a potentially large volume of rock on Earth that may undergo these low temperature reactions, but the same types of rocks also are prevalent on Mars, Mayhew said. Minerals that form as a result of the water- reactions on Earth have been detected on Mars as well, which means that the process described in the new study may have implications for potential Martian microbial habitats.

Explore further: Bacteria manipulate salt to build shelters to hibernate

Related Stories

New method for producing clean hydrogen

May 21, 2013

Duke University engineers have developed a novel method for producing clean hydrogen, which could prove essential to weaning society off of fossil fuels and their environmental implications.

Iron in primeval seas rusted by bacteria

Apr 25, 2013

(Phys.org) —Researchers from the University of Tübingen have been able to show for the first time how microorganisms contributed to the formation of the world's biggest iron ore deposits. The biggest known ...

Researchers harness nature to produce the fuel of the future

Jan 30, 2013

Hydrogen has tremendous potential as an eco-friendly fuel, but it is expensive to produce. Now researchers at Princeton University and Rutgers University have moved a step closer to harnessing nature to produce hydrogen for ...

Recommended for you

Giant crater in Russia's far north sparks mystery

3 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

3 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Bacteria manipulate salt to build shelters to hibernate

20 hours ago

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

How do we terraform Venus?

20 hours ago

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

Biomarkers of the deep

22 hours ago

Tucked away in the southwest corner of Spain is a unique geological site that has fascinated astrobiologists for decades. The Iberian Pyrite Belt (IPB) in Spain's Río Tinto area is the largest known deposit ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Landrew
3.9 / 5 (7) May 30, 2013
Oh just stop with all the talk of a self-sustaining colony on Mars. It's far too early.The radiation problem has not been solved, therefore it's a one-way trip, with a lingering death from cancer at the other end, without much palliative care, provided everything goes perfectly according to plan. Even if you escape cancer, the bleakness of your existence there is sure to drive you back to the insanity that drove you to sign up for the trip in the first place.
Neinsense99
3.2 / 5 (9) May 31, 2013
The radiation problem is really a problem with launching enough mass from Earth to orbit, or finding another source of useful mass in a lower gravitational field that can act as shielding. Surround the ship with water in solid or liquid form, have the crew sleep in a heavily protected area. Nothing that hasn't been dreamt up and written up already.