Opportunity discovers clays favorable to martian biology and sets sail for motherlode of new clues

May 27, 2013 by Ken Kremer, Universe Today
The pale rock in the upper center of this image, about the size of a human forearm, includes a target called “Esperance,” which was inspected by NASA’s Mars Exploration Rover Opportunity. Data from the rover’s alpha particle X-ray spectrometer (APXS) indicate that Esperance’s composition is higher in aluminum and silica, and lower in calcium and iron, than other rocks Opportunity has examined in more than nine years on Mars. Preliminary interpretation points to clay mineral content due to intensive alteration by water. Credit: NASA/JPL-Caltech/Cornell/Arizona

Now nearly a decade into her planned 3 month only expedition to Mars, NASA's longest living rover Opportunity, struck gold and has just discovered the strongest evidence to date for an environment favorable to ancient Martian biology – and she has set sail hunting for a motherlode of new clues amongst fabulous looking terrain!!

Barely two weeks ago in mid-May 2013, 's analysis of a new rock target named "Esperance" confirmed that it is composed of a "clay that had been intensely altered by relatively neutral pH water – representing the most favorable conditions for biology that Opportunity has yet seen in the rock histories it has encountered," NASA said in a statement.

The finding of a fractured rock loaded with and ravaged by flowing in which life could have thrived amounts to a scientific home run for the sized rover!

"Water that moved through fractures during this rock's history would have provided more favorable conditions for biology than any other wet environment recorded in rocks Opportunity has seen," said the mission's principal investigator Prof. Steve Squyres of Cornell University, Ithaca, N.Y.

Opportunity accomplished the ground breaking by exposing the interior of Esperance with her still functioning Rock Abrasion Tool (RAT) and examining a pristine patch using the microscopic camera and X-Ray spectrometer on the end of her 3 foot long .

The robot made the discovery at the conclusion of a 20 month long science expedition circling around a low ridge called "Cape York" – which she has just departed on a southerly heading trekking around the eroded rim of the huge crater named "Endeavour."

"Esperance was so important, we committed several weeks to getting this one measurement of it, even though we knew the clock was ticking."

Esperance stems from a time when the was far warmer and wetter billions of years ago.

"What's so special about Esperance is that there was enough water not only for reactions that produced clay minerals, but also enough to flush out ions set loose by those reactions, so that Opportunity can clearly see the alteration," said Scott McLennan of the State University of New York, Stony Brook, a long-term planner for Opportunity's science team.

Esperance is unlike any rock previously investigated by Opportunity; containing far more aluminum and silica which is indicative of clay minerals and lower levels of calcium and iron.

Most, but not all of the rocks inspected to date by Opportunity were formed in an environment of highly acidic water that is extremely harsh to most life forms.

Clay minerals typically form in potentially drinkable, neutral water that is not extremely acidic or basic.

Close-Up of ‘Esperance’ After Abrasion by Opportunity This mosaic of four frames shot by the microscopic imager on the robotic arm of NASA’s Mars Exploration Rover Opportunity shows a rock target called “Esperance” after some of the rock’s surface had been removed by Opportunity’s rock abrasion tool, or RAT. The component images were taken on Sol 3305 on Mars (May 11, 2013). The area shown is about 2.4 inches (6 centimeters) across. Credit: NASA/JPL-Caltech/Cornell/USGS

Previously at Cape York, Opportunity had found another outcrop containing a small amount of clay minerals formed by exposure to water called "Whitewater Lake."

"There appears to have been extensive, but weak, alteration of Whitewater Lake, but intense alteration of Esperance along fractures that provided conduits for fluid flow," said Squyres.

Cape York is a hilly segment of the rim of Endeavour crater which spans 14 miles (22 km) across – where the robot arrived in mid-2011 and will spend her remaining life.

Opportunity has now set sail for her next crater rim destination named "Solander Point", an area about 1.4 miles (2.2 kilometers) away – due south from "Cape York."

"Our next destination will be Solander Point," Squyres told Universe Today.

Along the way, Opportunity will soon cross "Botany Bay" and "Sutherland Point", last seen when Opportunity first arrived at Cape York.

Eventually she will continue further south to a rim segment named 'Cape Tribulation' which holds huge caches of clay minerals.

The rover must arrive at "Solander Point" before the onset of her 6th Martian winter so that she can be advantageously tilted along north facing slopes to soak up the maximum amount of sun by her power generating solar wings. She might pull up around August.

On the other side of Mars, Opportunity's new sister rover Curiosity also recently discovered clay minerals on the floor of her landing site inside Gale Crater.

Curiosity found the clay minerals – and a habitat that could support life – after analyzing powdery drill tailings from the Yellowknife Bay basin worksite with her on board state-of-the-art chemistry labs.

Just a week ago on May 15 (Sol 3309), Opportunity broke through the 40 year old American distance driving record set back in December 1972 by Apollo 17 astronauts Eugene Cernan and Harrison Schmitt.

But she is not sitting still resting on her laurels!

This past week the robots handlers' back on Earth put the pedal to the metal and pushed her forward another quarter mile during 5 additional drives over 7 Sols, or Martian days. Thus her total odometry since landing on 24 January 2004 now stands at 22.45 miles (36.14 kilometers).

Opportunity will blast through the world record milestone of 23 miles (37 kilometers) held by the Lunokhod 2 lunar rover (from the Soviet Union), somewhere along the path to "Solander Point" in the coming months.

Endeavour Crater features terrain with older rocks than previously inspected and unlike anything studied before by Opportunity. It's a place no one ever dared dream of reaching prior to Opportunity's launch in the summer of 2003 and landing on the Meridiani Planum region in 2004.

Signatures of clay minerals, or phyllosilicates, were detected at several spots at Endeavour's western rim by observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard NASA's Mars Reconnaissance Orbiter (MRO).

"The motherlode of clay minerals is on Cape Tribulation. The exposure extends all the way to the top, mainly on the inboard side," says Ray Arvidson, the rover's deputy principal investigator at Washington University in St. Louis.

Stay tuned for the continuing breathtaking adventures of NASA's sister rovers Opportunity and Curiosity!

Explore further: Europe sat-nav launch glitch linked to frozen pipe

add to favorites email to friend print save as pdf

Related Stories

Mars rover Opportunity examines clay clues in rock

May 18, 2013

(Phys.org) —NASA's senior Mars rover, Opportunity, is driving to a new study area after a dramatic finish to 20 months on "Cape York" with examination of a rock intensely altered by water.

Nine-year-old Mars rover passes 40-year-old record

May 17, 2013

While Apollo 17 astronauts Eugene Cernan and Harrison Schmitt visited Earth's moon for three days in December 1972, they drove their mission's Lunar Roving Vehicle 19.3 nautical miles (22.210 statute miles ...

Clays on Mars: More plentiful than expected

Dec 20, 2012

(Phys.org)—A new study co-authored by the Georgia Institute of Technology indicates that clay minerals, rocks that usually form when water is present for long periods of time, cover a larger portion of ...

Recommended for you

Europe sat-nav launch glitch linked to frozen pipe

17 hours ago

A frozen fuel pipe in the upper stage of a Soyuz launcher likely caused the failure last month to place two European navigation satellites in orbit, a source close to the inquiry said Wednesday.

Cyanide ice in Titan's atmosphere

19 hours ago

Gigantic polar clouds of hydrogen cyanide roughly four times the area of the UK are part of the impressive atmospheric diversity of Titan, the largest moon of Saturn, a new study led by Leiden Observatory, ...

Video: Alleged meteor caught on Russian dash cam (again)

23 hours ago

Thanks to the ubiquity of dashboard-mounted video cameras in Russia yet another bright object has been spotted lighting up the sky over Siberia, this time a "meteor-like object" seen on the evening of Saturday, Sept. 27.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

VENDItardE
3 / 5 (4) May 27, 2013
awesomely cool
marble89
1.8 / 5 (6) May 27, 2013
I think NASA is so obsessed with finding "LIFE !" On Mars, past or present, that they are going to find it whether it exists or not. Why not just let Mars be Mars and stop trying to see it as "Earthlike". My view is that an ALIEN and UNearthlike ancient Mars will be even more fascinating that an early earth clone ...
Inspector Spacetime
1 / 5 (2) May 29, 2013
Probably because not even the Earth has always been "Earthlike." Once upon a time, our world was dominated by a reducing atmosphere. Before that, it had no oceans. Before that, its surface was being pummeled by space-rocks and held lava seas.

Mars is more similar to Earth than any other world we can study. And it's close. Mars cooled before Earth did, Mars acquired oceans before Earth did. Mars was "Earthlike" before the Earth ever was. Its surface was hospitable to life at an earlier time. We know comets brought oceans and the ingredients for life to our world, and we know rocks blasted from the surface of Mars came here.

Maybe Mars is less alien than it seems. Maybe life from Mars took root here. Maybe we are the martians.