Researchers use gait primitives from real animals to simulate movement in robots (w/ video)

May 01, 2013 by Bob Yirka report
Researchers use gait primitives from real animals to simulate movement in robots (w/ video)

( —Researchers at the Italian Institute of Technology (IIT) have used stop-motion technology to capture gait primitives of real animals—the data captured was then used to allow a small quadruped robot to walk and trot like a real horse. The team describes their project in their paper published in Biological Cybernetics.

The robot used by the team at IIT is known as cheetah-cub, it was developed jointly between IIT and a team in Switzerland at Ecole Polytechnique Federale de Lausanne. Its purpose is to gain knowledge of how to get robot animals to move like real animals. In its original incarnation, the robot was made to move as closely as possible to a , hence its name. In this new effort, the team from IIT worked to cause the robot—which is roughly the size of a housecat—to walk, trot and run like a horse.

This video is not supported by your browser at this time.

To make that happen, the team is pioneering a measuring technique that uses what are known as Kinematic Motion Primitives (kMPs). It involves employing stop-motion video capture to discover "primitives" in an animal's . Primitives describe where all the animals limbs are, the angles of their joints, etc. at certain points in time while the animal is walking, running, etc. Researchers have found that the gait of an animals is cyclic, thus, to recreate the process all roboticists need do is capture the essential components of the gait, and run it like a loop, over and over—except that in the real world, external events intervene to compromise the gait—uneven terrain, potholes, etc.—causing a need for constant readjustment to keep the gait going. To get that to happen with a robot, engineers have designed what are known as Central Pattern Generators— that use sensors in the legs to note disruptions to the gait, and then to get the robot back on track again as quickly and smoothly as possible.

Using this technique the team at IIT has caused the robot to walk in a way that resembles the way a horse walks, at roughly 0.43 m/s and to trot at approximately 0.59 m/s. Running, or in this case galloping has not gone as well, as the robot has a stiff spine—horses flex their spines when running. The team has also added in transitional programming to allow the robot to move seamlessly between walking and trotting and is currently researching ways to give the a flexible spine.

Explore further: Engineers debut adhesive material based on gecko feet

More information: Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot, Biological Cybernetics, March 2013. DOI:10.1007/s00422-013-0551-9 .

This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.

via IEEE Spectrum

Related Stories

Organized chaos gets robots going (Update)

Jan 17, 2010

( -- Even simple insects can generate quite different movement patterns with their six legs. The animal uses various gaits depending on whether it crawls uphill or downhill, slowly or fast. Scientists ...

New robot 'Cheetah' breaks land-speed record

Mar 06, 2012

( -- Up till now researchers at Boston Dynamics have demonstrated four legged robots that appear meant to carry heavy loads as they tromp through and over rough terrain (e.g. Alpha Dog and Petman, LS3). Now it appears they’ve taken a different approach in looking ...

Recommended for you

Cheetah robot lands the running jump (w/ Video)

5 hours ago

In a leap for robot development, the MIT researchers who built a robotic cheetah have now trained it to see and jump over hurdles as it runs—making this the first four-legged robot to run and jump over ...

Robot swarms use collective cognition to perform tasks

May 28, 2015

The COCORO project's robot swarms not only look like schools of fish, they behave like them too. The project developed autonomous robots that interact with each other and exchange information, resulting in ...

Job-sharing with nursing robot

May 27, 2015

Given the aging of the population and the low birthrate both in Japan and elsewhere, healthcare professionals are in short supply and unevenly distributed, giving rise to a need for alternatives to humans ...

Robots can recover from damage in minutes (w/ Video)

May 27, 2015

Robots will one day provide tremendous benefits to society, such as in search and rescue missions and putting out forest fires—but not until they can learn to keep working if they become damaged.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 01, 2013
interesting project
1 / 5 (1) May 02, 2013
Researchers at the Italian Institute of Technology (IIT) are pioneering in stealing the method all roboticists need at
not rated yet May 02, 2013
" discover "primitives" in an animal's gait"
Compulsory South Park reference:
(sinister chant) "CRAB PEOPLE...CRAB PEOPLE"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.