Light switches brain signaling: Longer days bring 'winter blues' for rats

Apr 25, 2013
Adult rat display more confident exploratory behavior in the open arm of the elevated plus maze following one-week exposure to short-day photoperiod. Light exposure affects dopamine expression in the hypothalamus controlling stress response. Credit: Davide Dulcis and Pouya Jamshidi

Most of us are familiar with the "winter blues," the depression-like symptoms known as "seasonal affective disorder," or SAD, that occurs when the shorter days of winter limit our exposure to natural light and make us more lethargic, irritable and anxious. But for rats it's just the opposite.

Biologists at UC San Diego have found that rats experience more when the days grow longer. More importantly, they discovered that the rat's brain cells adopt a new chemical code when subjected to large changes in the day and night cycle, flipping a switch to allow an entirely different neurotransmitter to stimulate the same part of the brain.

Their surprising discovery, detailed in the April 26 issue of Science, demonstrates that the adult is much more malleable than was once thought by neurobiologists. Because rat brains are very similar to , their finding also provides a greater insight into the in our brain linked to light reception. And it opens the door for new ways to treat such as Parkinson's, caused by the death of dopamine-generating cells in the brain.

The neuroscientists discovered that rats exposed for one week to 19 hours of darkness and five hours of light every day had more making dopamine, which made them less stressed and anxious when measured using standardized behavioral tests. Meanwhile, rats exposed for a week with the reverse—19 hours of light and five hours of darkness—had more neurons synthesizing the neurotransmitter , making them more stressed and anxious.

"We're diurnal and rats are nocturnal," said Nicholas Spitzer, a professor of biology at UC San Diego and director of the Kavli Institute for Brain and Mind. "So for a rat, it's the longer days that produce stress, while for us it's the longer nights that create stress."

Because rats explore and search for food at night, while humans evolved as creatures who hunt and forage during the daylight hours, such differences in brain chemistry and behavior make sense. Evolutionary changes presumably favored humans who were more active gatherers of food during the longer days of summer and saved their energy during the shorter days of winter.

"Light is what wakes us up and if we feel depressed we go for a walk outside," said Davide Dulcis, a research scientist in Spitzer's laboratory and the first author of the study. "When it's spring, I feel more motivation to do the things I like to do because the days are longer. But for the rat, it's just the opposite. Because rats are nocturnal, they're less stressed at night, which is good because that's when they can spend more time foraging or eating."

This video is not supported by your browser at this time.
Elevated plus maze behavior (36 seconds) following exposure to 12L:12D photoperiod for one week. Credit: AAAS

But how did our brains change when humans evolved millions of years ago from small nocturnal rodents to diurnal creatures to accommodate those behavioral changes?

"We think that somewhere in the brain there's been a change," said Spitzer. "Sometime in the evolution from rat to human there's been an evolutionary adjustment of circuitry to allow switching of neurotransmitters in the opposite direction in response to the same exposure to a balance of light and dark."

A study published earlier this month in the American Journal of Preventive Medicine found some correlation to the light-dark cycle in rats and stress in humans, at least when it comes to people searching on the internet for information in the winter versus the summer about mental illness. Using Google's search data from 2006 to 2010, a team of researchers led by John Ayers of San Diego State University found that mental health searches on Google were, in general, 14 percent higher in the winter in the United States and 11 percent higher in the Australian winter.

"Now that we know that day length can switch transmitters and change behavior, there may be a connection," said Spitzer.

In their rat experiments, the UC San Diego neuroscientists found that the switch in transmitter synthesis in the rat's from dopamine to somatostatin or back again was not due to the growth of new neurons, but to the ability of the same neurons there to produce different neurotransmitters.

Rats exposed to 19 hours of darkness every 24 hours during the week showed higher numbers of dopamine neurons within their brains and were more likely, the researchers found, to explore the open end of an elevated maze, a behavioral test showing they were less anxious. These rats were also more willing to swim, another laboratory test that showed they were less stressed.

"Because rats are nocturnal animals, they like to explore during the night and dopamine is a key part of our and their reward system," said Spitzer. "It's part of what allows them to be confident and reduce anxiety."

The researchers said they don't know precisely how this neurotransmitter switch works. Nor do they know what proportion of light and darkness or stress triggers this switch in brain chemistry. "Is it 50-50? Or 80 percent light versus dark and 20 percent stress? We don't know," added Spitzer. "If we just stressed the animal and didn't change their photoperiod, would that lead to changes in transmitter identity? We don't know, but those are all doable experiments."

But as they learn more about this trigger mechanism, they said one promising avenue for human application might be to use this neurotransmitter switch to deliver dopamine effectively to parts of the brain that no longer receive dopamine in Parkinson's patients.

"We could switch to a parallel pathway to put dopamine where it's needed with fewer side effects than pharmacological agents," said Dulcis.

Spitzer, Dulcis and the other researchers involved in the study are now working with biomedical scientists at the UC San Diego medical school to track the brains of individual with positron emission tomography after long and short days of light to determine how stable the neurotransmitter switches are and how quickly the change after being exposed to different periods of light.

Explore further: Study shows exception to rule of lifespan for fliers, burrowers and tree dwellers

More information: "Neurotransmitter Switching in the Adult Brain Regulates Behavior," by D. Dulcis, Science, 2013.

Related Stories

Fat sand rats are SAD like us

Nov 08, 2010

(PhysOrg.com) -- Saying goodbye to summer can be difficult for everybody. In some people the onset of winter triggers Seasonal Affective Disorder, or SAD, a mood disorder in which sufferers experience symptoms ...

Does motherhood dampen cocaine's effects?

Oct 15, 2012

Mother rats respond much differently to cocaine than female rats that have never given birth, according to new University of Michigan research that looks at both behavior and brain chemistry.

Changes in brain chemicals mark shifts in infant learning

Oct 26, 2009

When do you first leave the nest? Early in development infants of many species experience important transitions—such as learning when to leave the protective presence of their mother to start exploring the wider world. ...

Recommended for you

Offspring benefit from mum sending the right message

6 hours ago

(Phys.org) —Researchers have uncovered a previously unforeseen interaction between the sexes which reveals that offspring survival is affected by chemical signals emitted from the females' eggs.

Lemurs match scent of a friend to sound of her voice

20 hours ago

Humans aren't alone in their ability to match a voice to a face—animals such as dogs, horses, crows and monkeys are able to recognize familiar individuals this way too, a growing body of research shows.

User comments : 0

More news stories

Adventurous bacteria

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...