Archaeons shown to thrive on fireworks ingredient

Apr 05, 2013 by Lin Edwards report
Archaeoglobus fulgidus
Archaeoglobus fulgidus. Credit: Microbewiki

(Phys.org) —A new study in the Netherlands has found a deep-sea microbe living in high-temperature hydro-thermal vents can thrive on chlorate and perchlorate anions. Perchlorate, an ingredient in rocket fuel and fireworks, is toxic to most organisms.

The researchers, led by Martin Liebensteiner of Wageningen University in the Netherlands, have shown for the first time that Archaeoglobus fulgidus, an archaeon living in deep can survive and grow by reducing chlorate (ClO3-) and (ClO4-) anions using enzymes (including some that are molybdenum-based) for the metabolism. Chlorates and perchlorates are not commonly found in the environments in which the archaeon lives.

Hot are the result of volcanic activity beneath the ocean floor, and tend to be high-pressure environments poor in oxygen. The water around the vents can be almost at boiling point (60 to 95 degrees C). Most inhabitants of such environments are single-celled anaerobic microbes called , and one of the commonest of these is A. fulgidus, which resembles a bacterium. It can also be found in land-based hot springs.

A few have previously been shown to reduce chlorates and perchlorates, but the metabolism in the bacteria produces the toxic chlorite, which is then broken down into chloride and oxygen. In the archaeon, chlorite is not split because the microbe lacks the required enzyme, but instead chlorite appears to be eliminated through a chain of reactions involving . The chlorite reacts with sulfides to produce more highly oxidized molecules such as sulfates. A. fulgidus does not produce oxygen, which is toxic to it.

The researches performed growth experiments on A. fulgidis, along with genomic and proteomic analyses. Liebensteiner was interested in how the microbe would deal with perchlorate because it exists in the environment naturally and anthropogenically, and has also been found on Mars (although the Martian environment is too cold for microbes such as A. fulgidis).

The scientists think that the first organisms to evolve may have been archaeons similar to A. fulgidus and survived by reducing chlorates, perchlorates and other molecules. The conditions on the Earth over 2.5 billion years ago were believed to be similar to the conditions the archaeon thrives in now, and the presence of such organisms may have prevented the accumulation of perchlorates in Earth's early environment long before photosynthetic organisms evolved.

The paper was published in the journal Science on April 5th.

Explore further: Friction harnessed by proteins helps organize cell division

More information: Archaeal (Per)Chlorate Reduction at High Temperature: An Interplay of Biotic and Abiotic Reactions, Science 5 April 2013: Vol. 340 no. 6128 pp. 85-87 DOI: 10.1126/science.1233957

ABSTRACT
Perchlorate and chlorate anions [(per)chlorate] exist in the environment from natural and anthropogenic sources, where they can serve as electron acceptors for bacteria. We performed growth experiments combined with genomic and proteomic analyses of the hyperthermophile Archaeoglobus fulgidus that show (per)chlorate reduction also extends into the archaeal domain of life. The (per)chlorate reduction pathway in A. fulgidus relies on molybdo-enzymes that have similarity with bacterial enzymes; however, chlorite is not enzymatically split into chloride and oxygen. Evidence suggests that it is eliminated by an interplay of abiotic and biotic redox reactions involving sulfur compounds. Biological (per)chlorate reduction by ancient archaea at high temperature may have prevented accumulation of perchlorate in early terrestrial environments and consequently given rise to oxidizing conditions on Earth before the rise of oxygenic photosynthesis.

Related Stories

Phoenix Mars Team Opens Window on Scientific Process

Aug 06, 2008

(PhysOrg.com) -- Phoenix Mars mission scientists spoke today on research in progress concerning an ongoing investigation of perchlorate salts detected in soil analyzed by the wet chemistry laboratory aboard ...

Life discovered on dead hydrothermal vents

Jan 25, 2012

Scientists at USC have uncovered evidence that even when hydrothermal sea vents go dormant and their blistering warmth turns to frigid cold, life goes on.

Recommended for you

For cells, internal stress leads to unique shapes

11 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

12 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

14 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
1 / 5 (1) Apr 07, 2013
Hmmmm! We have been told by nasa that Martian soil is contaminated w/ high (??) concentrations of toxic perchlorate. Clearly, not toxic to ALL life.

More news stories

More vets turn to prosthetics to help legless pets

A 9-month-old boxer pup named Duncan barreled down a beach in Oregon, running full tilt on soft sand into YouTube history and showing more than 4 million viewers that he can revel in a good romp despite lacking ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...