Research team develops new compact and energy-efficient nanoscale microwave oscillators

Mar 20, 2013
Credit: SINANO

By using improved magnetic materials, based on the control of interface properties of ultra-thin magnetic films, researchers from the Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (SINANO), the University of California at Los Angeles(UCLA), and the University of Messinahave made major experimental improvements to develop a more compact, more energy-efficient generation of a mobile communication device known as spin transfer nano-oscillator (STNO). STNOs use the spin of electrons to create steady microwave oscillations needed for various applications in mobile communications, unlike current silicon-based oscillators which use their charge. The SINANO team's improved oscillator has great potential to be used in future portable electronic devices and wireless modules, systems on a chip, and for power-efficient local clock signal generation in digital systems.

The STNOs are composed of two distinct magnetic layers. One layer has a fixed magnetic polar direction, while the other layer's magnetic direction can be manipulated to gyrate by passing an electric current through it. This allows the structure to produce very precise oscillating microwaves. The STNO's key advantage over existing technologies is that it can combine large tunability and low energy with nanoscale size, as well as broad working temperature ranges.

Yet while STNOs are potentially superior in many respects to existing microwave oscillator technologies, their microwave signals mainly rely on both large drive currents and the application of , which hinders the implementation of STNOs for practical applications in terms of and size.

By using with perpendicular magnetic anisotropy– similar to those used in spin-transfer torque memory – the SINANO team demonstrated large microwave signals at ultralow current densities (<5.4×105A/cm2) and in the absence of any bias magnetic fields. This eliminates the need to move large numbers of electrons through wires, and also eliminates the need for permanent magnets or conducting coils to provide the bias magnetic field, thus significantly saving both energy and space. The results are microwave oscillators that generate much less heat due to their lower current, making them more energy-efficient.

"Previously, there had been no demonstration of a spin-transfer oscillator with sufficiently high output power, low drive current density, and simultaneously without the need for an external magnetic field, hence preventing practical applications," said the lead researcher ZENG Zhongming, SINANO professor at the SINANO Nanofabrication Facility. "We have realized all these requirements in a single device."

"The ability to excite microwave signals at ultralow current density and in zero magnetic field is exciting in nano-magnetism. This work presents a new route for the development of the next-generation of on-chip oscillators." said co-author G. Finocchio, who is an assistant professor at the University of Messina, Italy.

"Ultra-low-power spintronic devices have the potential to transform the electronics industry, with the most immediate example being in the area of nonvolatile magnetic memory (MRAM). This work shows that similar materials and devices may also bring nanoscale spintronic one step closer to reality," said Pedram Khalili, a research associate and program manager at UCLA and co-author of the paper. "Thesedevices can be integrated with standard CMOS logic manufacturing processes, enabling a wide range of products from standalone memory and microwave components to systems on a chip."

Explore further: 3-D images of tiny objects down to 25 nanometres

More information: The paper, "Ultralow-current-density and bias-field-free spin-transfer nano-oscillator," has been published online in the journal Scientific Reports (Nature Publishing Group).… /full/srep01426.html

Related Stories

Engineers develop new magnetoelectric computer memory

Dec 14, 2012

(—By using electric voltage instead of a flowing electric current, researchers from UCLA's Henry Samueli School of Engineering and Applied Science have made major improvements to an ultra-fast, high-capacity class ...

Recommended for you

3-D images of tiny objects down to 25 nanometres

Mar 30, 2015

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

Solving molybdenum disulfide's 'thin' problem

Mar 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 21, 2013
That's interested. It would be useful for future on-chip oscillators if the power can be significantly improved.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.