Tarsiers' bulging eyes shed light on evolution of human vision

Mar 27, 2013
In a genetic study of tarsiers' eyes, Dartmouth researchers suggest that primates developed highly acute, three-color vision that permitted them to shift to daytime living. Credit: Nathaniel Dominy, Dartmouth College

After eons of wandering in the dark, primates developed highly acute, three-color vision that permitted them to shift to daytime living, a new Dartmouth College study suggests.

The findings challenge the prevailing view that trichromatic color vision, a hallmark of , evolved only after they started getting up with the sun, a shift that gave rise to anthropoid (higher) primates, which, in turn, gave rise to the human lineage. The results are published in the journal Proceedings of the Royal Society B: Biological Sciences.

The authors based their findings on a genetic study of tarsiers, the enigmatic elfin primate that branched off early on from monkeys, apes and humans. Tarsiers have a number of unusual traits – from their ability to communicate in the pure ultrasound to their iconic bulging eyes. Such sensory specializations have long fueled debate on the adaptive origins of .

Dartmouth researchers who discovered the tarsiers' ultrasound in a study last year said their new study sheds light on why the nocturnal critter's ancestors had enhanced color vision better suited for daytime conditions like their anthropoid cousins.

The authors analyzed the genes that encode photopigments in the eye to show that the last common ancestor of living tarsiers had highly acute, three-color vision much like living monkeys and apes. This finding would normally indicate a daytime lifestyle, but the tarsier fossil record showing enlarged eyes suggests they were active mainly at night.

These contradictory lines of evidence led the authors to suggest that early tarsiers were instead adapted to dim light levels, such as twilight or bright moonlight. These light conditions were dark enough to favor large eyes but still bright enough to support trichromatic .

The authors said such keen-sightedness may have helped higher primates to carve out a fully daytime niche, which allowed them to better see prey, predators and fellow primates and to expand their territory in a world no longer limited to the shadows.

Explore further: Counting fish teeth reveals regulatory DNA changes behind rapid evolution, adaptation

Related Stories

Recommended for you

Spy on penguin families for science

3 hours ago

Penguin Watch, which launches on 17 September 2014, is a project led by Oxford University scientists that gives citizen scientists access to around 200,000 images of penguins taken by remote cameras monitoring ...

Slimy fish and the origins of brain development

4 hours ago

Lamprey—slimy, eel-like parasitic fish with tooth-riddled, jawless sucking mouths—are rather disgusting to look at, but thanks to their important position on the vertebrate family tree, they can offer ...

Global importance of pollinators underestimated

4 hours ago

(Phys.org) —Declines in populations of pollinators, such as bees and wasps, may be a key threat to nutrition in some of the most poorly fed parts of the globe, according to new research.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

flashgordon
not rated yet Mar 27, 2013
I once thought that maybe Homo Erectus learned to forage during the day time; this would also allow them to expand from the evolved exclusive habitat in Africa to Eurasia. But, of course, this article shows the primate ability to due its business in the daytime evolved long before then!