Astronomers discover new kind of supernova

Mar 26, 2013
This artist's conception shows the suspected progenitor of a new kind of supernova called Type Iax. Material from a hot, blue helium star at right is funneling toward a carbon/oxygen white dwarf star at left, which is embedded in an accretion disk. In many cases the white dwarf survives the subsequent explosion. Credit: Christine Pulliam (CfA)

(Phys.org) —Supernovae were always thought to occur in two main varieties. But a team of astronomers including Carnegie's Wendy Freedman, Mark Phillips and Eric Persson is reporting the discovery of a new type of supernova called Type Iax.

This research has been accepted for publication in The Astrophysical Journal and is available online.

Previously, supernovae were divided into either core-collapse or Type Ia categories. Core-collapse supernovae are the explosion of a star about 10 to 100 times as massive as our sun. Type Ia supernovae are the complete disruption of a tiny white dwarf.

This new type, Iax, is fainter and less energetic than Type Ia. Although both types come from exploding , Type Iax supernovas may not completely destroy the white dwarf.

"A Type Iax supernova is essentially a mini supernova," says lead author Ryan Foley, Clay Fellow at the Harvard-Smithsonian Center for Astrophysics (CfA). "It's the runt of the supernova litter."

The research team—which also included Max Stritzinger, formerly of Carnegie—identified 25 examples of the new type of supernova. None of them appeared in , which are filled with old stars. This suggests that Type Iax supernovas come from young star systems.

Based on a variety of observational data, the team concluded that a Type Iax supernova comes from a containing a white dwarf and a that has lost its outer hydrogen, leaving it helium dominated. The white dwarf collects helium from the normal star.

Researchers aren't sure what triggers a Type Iax. It's possible that the outer helium layer ignites first, sending a shock wave into the white dwarf. Alternatively, the white dwarf might ignite first due to the influence of the overlying helium shell.

Either way, it appears that in many cases the white dwarf survives the explosion, unlike in a Type Ia supernova where the white dwarf is completely destroyed.

The team calculates that Type Iax supernovae are about a third as common as Type Ia supernovae. The reason so few have been detected is that the faintest are only one-hundredth as bright as a .

"The closer we look, the more ways we find for stars to explode," Phillips said. The Large Synoptic Survey Telescope could discover thousands of Type Iax supernovas over its lifetime.

Explore further: Is the universe finite or infinite?

add to favorites email to friend print save as pdf

Related Stories

Supernova progenitor found?

Aug 03, 2012

(Phys.org) -- Type Ia supernovae are violent stellar explosions. Observations of their brightness are used to determine distances in the universe and have shown scientists that the universe is expanding at ...

One supernova type, two different sources

May 07, 2012

The exploding stars known as Type Ia supernovae serve an important role in measuring the universe, and were used to discover the existence of dark energy. They're bright enough to see across large distances, ...

Team finds Type Ia supernovae parents

Aug 11, 2011

Type Ia supernovae are violent stellar explosions whose brightness is used to determine distances in the universe. Observing these objects to billions of light years away has led to the discovery that the universe is expanding ...

Our galaxy might hold thousands of ticking 'time bombs'

Sep 06, 2011

(PhysOrg.com) -- In the Hollywood blockbuster "Speed," a bomb on a bus is rigged to blow up if the bus slows down below 50 miles per hour. The premise - slow down and you explode - makes for a great action ...

Recommended for you

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

Mar 27, 2015

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

Mar 27, 2015

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

Galaxy clusters collide—dark matter still a mystery

Mar 26, 2015

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

Mar 26, 2015

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

yash17
1 / 5 (1) Mar 27, 2013
From these three kinds of supernovae, I expect we move on with conclusion that all those supernovae are the end of live of the stars.
Fleetfoot
not rated yet Mar 27, 2013
That's somewhat obvious from the article:

".. unlike in a Type Ia supernova where the white dwarf is completely destroyed."

Type II also destroy the star. There are numerous resources on the web where you can find out about the lives of stars, it would be worth looking through a few.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.