New process speeds conversion of biomass to fuels

February 8, 2013
Artist’s conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted into alkanes used in gasoline and diesel fuel. Credit: osh Smith, Los Alamos National Laboratory.

(Phys.org)—Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. The team led by Los Alamos National Laboratory researchers elucidated the chemical mechanism of the critical steps, which can be performed under relatively mild, energy-efficient conditions. The journal Catalysis Science & Technology published the research.

"Efficient conversion of non-food biomass into fuels and chemical feedstocks could reduce society's dependence on foreign oil and ensure the long-term availability of renewable materials for consumer products," said John Gordon, one of the senior Los Alamos scientists on the project.

"Also, efficient conversion could decrease the production of greenhouse gases. However, current technologies to convert biomass into fuels require extreme conditions of high temperatures and high pressures, both of which make the conversion process prohibitively expensive."

The study provides important insight into a critical step in biomass fuels synthesis and it may enable the design of better, non-precious-metal catalysts and processes for large-scale transformation of biomass into fuels and commodity chemicals.

For more than a century, chemists focused on a "more is better" approach, adding functionality to molecules, not removing it. For this breakthrough, however, researchers applied the opposite strategy and aimed for simplicity, opening up a component of the molecule to make it easier to transform. They perfected a method for "direct-ring opening" of the furan rings, which are made of four carbons and one oxygen atom, and that are ubiquitous in biomass-derived fuel precursors.

Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, said Gordon, because these linear chains can then be reduced and deoxygenated into alkanes used in gasoline and diesel . The reaction requires relatively mild conditions using the common reagent hydrochloric acid as a catalyst.

The researchers tested the process on several biomass-derived , and they performed calculations to study the selectivity and mechanism of reaction. This information is key to designing better catalysts and processes for conversion.

Explore further: 'Green' gasoline on the horizon?

More information: pubs.rsc.org/en/content/articlepdf/2013/cy/c2cy20395b

Related Stories

'Green' gasoline on the horizon?

January 13, 2009

University of Oklahoma researchers believe newer, more environmentally friendly fuels produced from biomass could create alternative energy solutions and alleviate dependence on foreign oil without requiring changes to current ...

Biomass as a source of raw materials

May 12, 2009

For the protection of the environment, and because of the limited amount of fossil fuels available, renewable resources, such as specially cultivated plants, wood scraps, and other plant waste, are becoming the focus of considerable ...

Sensible use of biomass: A chemical industry based on renew

November 14, 2011

(PhysOrg.com) -- Our industrialized world is largely dependent on fossil resources, whether for the generation of energy, as a fuel, or as a feedstock for the chemical industry. The environmental problems related to this ...

Recommended for you

A marine creature's magic trick explained

September 2, 2015

Tiny ocean creatures known as sea sapphires perform a sort of magic trick as they swim: One second they appear in splendid iridescent shades of blue, purple or green, and the next they may turn invisible (at least the blue ...

New method opens pathway to new drugs and dyes

September 2, 2015

Rice University scientists have developed a practical method to synthesize chemical building blocks widely used in drug discovery research and in the manufacture drugs and dyes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.