Digging yields clues: Biologists connect burrowing behavior in mice to genes

Jan 16, 2013 by Peter Reuell
A team of researchers led by Hopi Hoekstra, professor of organismic and evolutionary biology and molecular and cellular biology, studied two species of mice — oldfield mice and deer mice — and identified four regions in their genome that appear to influence the way they dig burrows. File photo by Stephanie Mitchell/Harvard Staff Writer

Nature vs. nurture has long been one of the great debates in science—is behavior hard-wired into the brain, or determined by environment? In at least some cases, Harvard researchers are showing, how animals behave is in their genes.

As described in a Jan. 16 paper in Nature, a team of researchers led by Hopi Hoekstra, professor of organismic and and , studied two species of – oldfield mice and – and identified four regions in their genome that appear to influence the way they dig burrows.

"Given that burrowing is such a complex behavior, it was surprising that it may be controlled by just a few genes," Hoekstra said. "More importantly, it looks like the genetics are modular, so if we think in terms of how do you 'build' a complex trait, it could be that as you start to put these different modules together, they add up to this complex behavior."

According to Jesse Weber, the paper's lead author and a former graduate student in the Hoekstra Laboratory: "People have long been fascinated about how and why animals build homes. I believe this is one of, if not the first attempt to determine which genes are associated with the of animal architecture.

"Although we have not yet identified the exact genes that are involved, this study sets the foundation for research that will do precisely that," he added. "As soon as the or genes are found, I think it opens the very exciting opportunity to explore whether the same genes/mutations affect mammalian in general."

Though closely related, the species build drastically different burrows. While the digs relatively shallow and simple burrows, oldfield mice burrows are complex, complete with a long entrance tunnel, a separate nest chamber, and an escape tunnel that nearly reaches the surface.

This video is not supported by your browser at this time.
Video courtesy of Jesse Weber, Harvard University/Nature

In the field, Weber excavated the intricate burrows of oldfield mice across their range in the southeastern United States, and found that whether in hard-packed clay or sandy dunes, the length of the burrows was remarkably constant. This suggested that their burrowing behavior might be more strongly influenced by genes than environment.

To examine the role of genetics in producing differences in burrows, Weber and his colleagues began by crossbreeding the mice. When placed in a burrowing box in the lab, the new, hybrid mice dug deep, complex burrows similar to those of the oldfield mice.

"That was a bit of a surprise, because we might guess that a hybrid would build an intermediate burrow, because it got some genes from one parent and some from the other," Hoekstra said. "What this suggests is that the genes involved act in a dominant fashion."

When researchers crossbred the hybrid mice with deer mice, the results were striking, Hoekstra said. While some in the group continued to build complex burrows, others built burrows that combined traits from both species.

"When we genotype those second-generation hybrids, and measure their burrowing, we're able to see if there are any genetic regions that the small-burrowers have in common that aren't present in mice that build larger, more complex burrows," Hoekstra said. "Those regions are then thought to harbor genes that control the difference in behavior."

What researchers discovered, she said, were four regions of the that appear to play a role in burrow design – each of the first three added about three centimeters to the length of the burrow's entrance tunnel, while the fourth made mice approximately 30 percent more likely to dig an escape tunnel.

The next step is to begin identifying which specific genes are tied to burrowing behavior, and then to investigate how changes in those genes work in the to cause mice to build different burrows.

"One interesting aspect of this is that we are hypothesizing that pathways that are involved in addiction might be involved," she said. "These mice look like they're addicted to burrowing. It's too early to say anything definitely, but that's one area we are exploring."

Hoekstra emphasized that she isn't suggesting that all behaviors have genetic origins.

"It's clear that both genetics and environment contribute to most behaviors. There are some that are entirely dependent on environment, and there may be some that are all , but most are somewhere in between," she said. "What we've shown in this case is that for this behavior, in these two species of mice, there is a large role for ."

Explore further: Orchid named after UC Riverside researcher

More information: www.nature.com/nature/journal/v493/n7432/full/nature11816.html

Related Stories

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

22 hours ago

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 16, 2013
I've never seen a good explanation of how specific behaviors are influenced by genes (although general characteristics like fearfulness / inquisitiveness have been explained by genes influencing neurotransmitter production and receptors).

These mice should provide a good start at figuring out HOW genes influence a brain to promote specific behavioral changes.

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.