Powerful enzymes create ethanol from agricultural harvest waste

January 8, 2013

The DISCO project coordinated by VTT Technical Research Centre of Finland has developed powerful enzymes, which accelerate plant biomass conversion into sugars and further into products such as bioethanol. The project's results include lignin-tolerant enzymes and enzyme cocktails for processing spruce, straw, corn cob and wheat bran. The commercialisation of these enzymes has now begun in the Netherlands.

The EU's DISCO project developed powerful enzymes and enzyme cocktails suitable for various raw materials, with the purpose of converting agricultural side streams into fermentable sugars and further into products such as bioethanol. Plant biomass was chosen as the raw material for the project, since it contains lignocellulosic biomass, which is an abundant raw material.

The commercialisation process of the second-generation bioethanol industry, which uses lignocellulosic biomass instead of starch, has reached critical momentum: there are a total of 15 plants being constructed in Europe, the Americas and Asia. Lignocellulosic biomass use will substantially expand the market for industrial enzymes. The total industrial enzyme market is currently worth approximately 2.7 million euros per annum.

The raw materials studied in the project were spruce, straw, and used as . In Finland, the proportion of , and conifer biomass in particular, is significant.

Lignocellulosic biomass consists of cellulose, and lignin. Agricultural harvest waste contains large amounts of lignocellulosic biomass, which can be converted industrially into fermentable sugars with the help of enzymes. Microbes can then be used to produce various chemicals, such as bioethanol, from the sugars. Lignocellulosic biomass contains substantial amounts of lignin, which interferes with .

The DISCO project produced new knowledge on the inactivating property of lignin, which helped scientists develop enzymes that tolerate lignin better. New information on enzymes and activities that break down hemicellulose, vital for the efficient exploitation of plant biomass, was also obtained during the project.

British scientists participating in the project determined the structural characteristics of various raw materials. This information can be used to select appropriate enzyme cocktails for raw materials when upgrading .

The Dutch company Dyadic is currently commercialising the enzymes developed in the project.

Research Professor Kristiina Kruus of VTT coordinated the DISCO project, which had a total of 11 participants from seven countries. VTT's scientific role in the project related to discovering and developing enzymes from environmental samples as well as culture collections.

Explore further: Re-using enzymes in industry

Related Stories

Re-using enzymes in industry

May 4, 2010

(PhysOrg.com) -- A South Dakota State University scientist is exploring ways to re-use enzymes in processes such as making cellulosic ethanol.

Chemicals and biofuel from wood biomass

December 19, 2011

(PhysOrg.com) -- A method developed at Aalto University in Finland makes it possible to use microbes to produce butanol suitable for biofuel and other industrial chemicals from wood biomass. Butanol is particularly suited ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.