Computational physics moulds the future of electronic devices

Jan 02, 2013

Fundamental studies based on computational physics are an essential part of many different branches of research – from medical technology to mobile communication. Javad Hashemi has studied the electronic properties and conductivity of different structures based on carbon nanotubes in his doctoral dissertation for the Aalto University Department of Applied Physics.

Javad Hashemi's research is an effort to bridge the gap between experimental and .

"In we have two general areas: method development and application, which is simulating actual nano-scale systems, mostly with supercomputers. My work is a combination of both," describes Hashemi.

Hashemi has done basic research in both density-functional theory and density-matrix theory. The first is used to calculate the electronic properties of a physical system based on its electronic density.

"Density functionals have many shortcomings because of the approximations we use for it. A density matrix, on the other hand, can give more accurate results and allows us to calculate the properties of electronic systems more precisely."

"The study of nanotube structures and graphene is a very hot topic in nanoelectronics nowadays, and my computational research can give explanations for phenomena observed in experiments."

The basics of bendable and transparent nanoelectronics

When applied to "real-world" devices, carbon nanotubes are never complete and pristine: defects and imperfections affect the flow of electrons. Hashemi's research strives to understand what is the effect of defects on the conductivity of nanotubes and how to use these properties to engineer electronic devices.

"We have studied carbon nanotubes, which are cylinders made of a single of carbon and tried to find out how the electronic current changes when applied through the tube. The effects of the defects and perturbations, for instance of foreign , on the in the tubes must be known."

Hashemi paints a prospective application for the carbon nanotube structures: very thin, transparent and bendable electronic devices, for instance mobile phones.

"Good candidates for flexible electronic devices are networks: a mat-like network on which there are many carbon nanotubes. Therefore, we need to know, how the current goes from one nanotube to another and another."

"This is the complicated physics behind flexible electronic devices. Even though fundamental research like this may seem something far off from real life now, it is the base of all modern technologic devices, and it will help to create better devices for easier life in the future."

Explore further: Using strong lasers, investigators observe frenzy of electrons in a new material

add to favorites email to friend print save as pdf

Related Stories

Sandia researcher examines the physics of carbon nanotubes

May 01, 2008

Carbon nanotubes, described as the reigning celebrity of the advanced materials world, are all the rage. Recently researchers at Rice University and Rensselaer Polytechnic Institute used them to make the “blackest ...

NDSU nano research could impact flexible electronic devices

Feb 13, 2012

A discovery by a research team at NDSU and the National Institute of Standards and Technology shows the flexibility and durability of carbon nanotube films and coatings are intimately linked to their electronic properties. ...

Nanochemistry in Action

Mar 06, 2009

(PhysOrg.com) -- Using a single-walled carbon nanotube (SWCNT) as a test tube, scientists can explore chemistry at the nanoscale, which involves some unique effects. Nanotubes provide a confined, one-dimensional ...

Recommended for you

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

User comments : 0

More news stories

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...