Lane-swapping helps autonomous vehicles avoid collisions, study finds

Jan 28, 2013

Autonomous, driverless vehicles look set to hit the streets in the near future and become increasingly common, so UK researchers have investigated algorithms that could help developers include escape manoeuvres to allow such vehicles to quickly and safely switch lanes to avoid collisions with other road users.

Writing in the aptly named International Journal of Vehicle , Matthew Best of the Department of Aeronautical and at Loughborough University, in Leicestershire, discusses the optimisation of a vehicle's standard brake, acceleration and steering control inputs in the context of avoiding collisions. He has devised a computer simulation that allows all those parameters to be optimised concurrently during a safety manoeuvre and to show how speed reduction and swapping lanes might be carried out by an .

The optimal rapid lane-change would inevitably be an aggressive, high "g" manoeuvre that would destabilise the vehicle, and additional computing power would be needed to act quickly to correct under steer and other issues that arise during and after such a vehicle movement. The high-speed lane switch would likely be rarely used in a real-world autonomous drive, but could, in exceptional circumstances, allow driverless or robot vehicles to be safer on roads that which they share with other such vehicles and vehicles with human drivers.

Best points out that simulations at 70 mph (the UK national speed limit on motorways) reveal that braking alone would not lead to a safe outcome in many situations, so a lane swap would almost certainly be needed, assuming there were an empty lane for a vehicle to move into. A lane-change would in the best circumstances move the vehicle to safety in half the distance as braking at that speed.

The researchers concede that at present the limitations of on-board computing power in autonomous vehicles and the need for high-speed measuring real tyre friction coefficients and more means that his algorithm is limited to the simulation at present. However, it paves the way for developing more powerful, safety aware driving systems for such vehicles.

Explore further: Student designs and develops revolutionary new hand-held laminating tool

More information: Optimisation of high-speed crash avoidance in autonomous vehicles, Int. J. Vehicle Autonomous Systems, vol 10, issue 4, pp 337-354.

add to favorites email to friend print save as pdf

Related Stories

Changing the way we change lanes

Jun 25, 2012

By giving drivers the information they need to change lanes safely, a new device could reduce road crashes by up to 30 per cent.

Autonomous car navigates the streets of Berlin

Sep 20, 2011

(PhysOrg.com) -- German researchers from Freie Universitat Berlin traveled 80 km in total as passengers during a test drive of their autonomous car "MadeInGermany" over the weekend.

Recommended for you

EDAG car with textile skin set for Geneva show

14 hours ago

Making its debut at the Geneva Motor Show 2015 is the EDAG Light Cocoon. This is promoted as a new dimension for lightweight construction, a sportscar with a textile outer skin panel. The EDAG Light Cocoon ...

Stanford aims to bring player pianos back to life

Dec 17, 2014

(AP)—Stanford University wants to unlock the secrets of the player piano, which brought recorded music into living rooms long before there were cassettes, compact discs or iPods.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.