Indiana using new concrete to increase bridge life span

Jan 25, 2013 by Emil Venere
From left, Purdue University graduate students Paul Imbrock, Kambiz Raoufi and John Schlitter pour concrete for a test specimen in research to improve Indiana bridges. The state is using a new type of "internally cured" concrete researched at Purdue that promises to reduce maintenance costs and allow bridge decks to last longer. Raoufi and Schlitter recently graduated. Credit: Purdue University photo/Andy Hancock

(Phys.org)—Purdue University research is enabling Indiana to improve bridges in the state with a new "internally cured" high-performance concrete.

"This material will reduce maintenance costs and allow decks to last longer," said Jason Weiss, a professor of civil engineering and director of Purdue's Pankow Materials Laboratory. "Our testing indicates that internally cured high-performance concrete experiences substantially less cracking and concrete damage caused by deicing salt and, when properly designed, the service life of bridge decks can be greatly extended."

The Joint Transportation Research Program, a partnership between the Indiana Department of Transportation (INDOT) and Purdue, worked with Weiss and INDOT to create specifications for implementing the internally cured high-performance concrete. It will be used on four bridges this year, the first of which will be on State Road 933 in St. Joseph County.

"We anticipate these relatively minor changes to our concrete specifications to substantially extend the life of our bridges," said Troy Woodruff, INDOT's chief of staff. "That means fewer traffic delays due to bridge maintenance and repair, and much lower expense."

This video is not supported by your browser at this time.

Jay Wasson, INDOT deputy commissioner for engineering and asset management, said, "This collaboration between Purdue and INDOT to implement the research findings not only benefits Indiana taxpayers, but also provides valuable full-scale living laboratories for study by Purdue students and faculty. As further field data are collected by professor Weiss, we anticipate even broader deployment of this concrete specification."

Concrete is normally made by mixing portland cement with water, sand and stone. In the curing or hardening process, water helps the concrete mixture gain strength by reacting with the cement. Traditionally, curing is promoted by adding water on top of the bridge deck surface. The new technology for internal curing provides additional water pockets inside the concrete, enhancing the reaction between the cement and water, which adds to strength and durability. The water pockets are formed by using small porous stones - or lightweight fine aggregate, as it is known in the industry - to replace some of the sand in the mixture.

"A key step in the process is to pre-wet the lightweight aggregate with water before mixing the concrete," Weiss said. "Nearly five years of research has been performed to fully understand how to proportion these mixtures and the level of performance that can be expected."

The researchers assisted Monroe County in the specification of internally cured concrete used in a bridge built in 2010. The researchers are studying how well it performs compared to an adjacent bridge built the same year using conventional concrete.

"The control bridge has developed three cracks, but no cracks have developed in the internally cured bridge. Tests also show the internally cured concrete is approximately 30 percent more resistant to salt ingress," Weiss said.

He has worked with several states in addition to Indiana to accelerate the use of similar internally cured high-performance concretes. The composition of high-performance concrete varies from state-to-state depending on which materials are locally available and the design of bridge deck components.

The internal curing process also allows engineers to reduce the amount of portland cement used in the concrete by replacing a portion of it with supplementary materials, such as silica fume, fly ash and limestone. These supplements will reduce the waste stream, the need for raw materials and the carbon footprint of making concrete while improving its durability, Weiss said.

"We just finished a project for the Federal Highway Administration where we showed that we can take 60 percent of the cement out of a typical bridge deck and obtain similar if not better performance for bridges by taking advantage of the benefits internal curing provides," he said.

Explore further: Fiber-optic microscope will help physicians detect cancer, diseases at early stages

Related Stories

The flip side of salting winter roads

Nov 05, 2012

Swedish scientists have studied models to help road and bridge maintenance engineers work out how much damage salting the roads in winter might cause to steel-reinforced concrete structures.

Recipe for success: Recycled glass and cement

Feb 21, 2012

(PhysOrg.com) -- Michigan State University researchers have found that by mixing ground waste glass into the cement that is used to make concrete, the concrete is stronger, more durable and more resistant ...

Balsa bridges, with a twist

Oct 19, 2012

(Phys.org)—How much weight can a bridge made of balsa wood carry? When encased in a layer of fiber-reinforced resin, much more than you would expect, say engineers from EPFL. On October 12th, a composite ...

Recommended for you

Smart sensor technology to combat indoor air pollution

Apr 14, 2014

Indoor air quality (IAQ) influences the health and well-being of people but for the last 20 years there has been a growing concern about pollutants in closed environments, the difficulty in identifying them ...

Drones used to assess damage after disasters

Apr 11, 2014

Researchers of the University of Twente use a new method to map structural damage after disasters. A remote-controlled drone with a regular high-quality camera takes a large amount of pictures of a building. ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.