How our cells cope with toxic small molecules

Jan 30, 2013

In this week's issue of the prestigious journal Nature Chemical Biology, scientists Carole Linster (University of Luxembourg), Emile Van Schaftingen (Louvain University), and Andrew D. Hanson (University of Florida, Gainesville) review an important, but so far neglected, part of metabolism, namely metabolite damage-control.

In their publication 'Metabolite damage and its repair or pre-emption', the authors present a comprehensive overview of the known reactions generating unwanted small molecules in the cell as well as of the corresponding , and discuss the importance of this 'quality control' for cellular and organismal health.

"Damage-control in metabolism represents an entirely new concept, that shifts our view from linear sustained by highly specific enzymes to more that take into account numerous damage and repair reactions", explains Dr. Carole Linster, a young group leader at the Luxembourg Centre for Systems Biomedicine (LCSB), and hopes that her and others new research findings will lead to a change of paradigm in metabolism.

The molecules that constitute living cells are constantly subject to damaging reactions and fixing this damage immediately is crucial for cellular health and survival. Damage-control must therefore have existed since the dawn of life, and the repair mechanisms that cells have adopted throughout evolution have been studied by scientists for decades. But until recently, most researchers have focused their attention on the repair mechanisms acting on large molecules such as DNA and proteins, while damage-control of , called metabolites, has mostly been overlooked. Linster explains this oversight: "Classical biochemistry taught us that, given the high substrate specificity of enzymes, are very precise processes which don't generate any useless or toxic by-products. But thanks to new technologies we have learned that this is not the case, and that the cell is likely to constantly produce damaged metabolites, which have to be eliminated or repaired." A deficiency in metabolite repair can lead to fatal disease in humans.

The field of 'metabolite damage-control' is still in its infancy and biochemists are just starting to understand how the cell repairs damaged metabolites. This suggests that many metabolite damage-control systems remain to be discovered. "I hope that scientists who read this review will be convinced that metabolite repair is an important aspect of cell metabolism", says Linster. "It should inspire researchers to look for yet unidentified reactions and thereby improve our understanding of the extent of damage-control and the physiological importance thereof."

Explore further: 'Hairclip' protein mechanism explained

add to favorites email to friend print save as pdf

Related Stories

New powerful tool measures metabolites in living cells

Mar 08, 2012

By engineering cells to express a modified RNA called "Spinach," researchers have imaged small-molecule metabolites in living cells and observed how their levels change over time. Metabolites are the products of individual ...

Protecting genes, one molecule at a time

Sep 09, 2012

An international team of scientists have shown at an unprecedented level of detail how cells prioritise the repair of genes containing potentially dangerous damage. The research, published in the journal Nature and involv ...

Researchers uncover process involved in DNA repair

Jun 29, 2009

(PhysOrg.com) -- Every day people are exposed to chemical and physical agents that damage DNA. If it isn't repaired properly, this damage can lead to mutations that in some circumstances can lead to the development ...

High iron, copper levels block brain-cell DNA repair

May 20, 2011

No one knows the cause of most cases of Alzheimer's, Parkinson's and other neurodegenerative disorders. But researchers have found that certain factors are consistently associated with these debilitating conditions. One is ...

Recommended for you

'Hairclip' protein mechanism explained

30 minutes ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

Discovery in the fight against antibiotic-resistant bacteria

2 hours ago

For four years, researchers at Universite catholique de Louvain have been trying to find out how bacteria can withstand antibiotics, so as to be able to attack them more effectively. These researchers now understand how one ...

Stem cells born out of indecision

2 hours ago

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.