Experiment confirms existence of odd particle

December 4, 2012 by Kurt Riesselmann
Experiment confirms existence of odd particle
CMS experiment. Credit: CERN

Scientists working on the CMS experiment at the Large Hadron Collider have confirmed the existence of an odd, puzzling particle first observed a few years ago at DOE's Tevatron particle collider. Members of the CMS collaboration announced on Nov. 14 that they had spotted the curious object, dubbed Y(4140), which scientists had discovered at the CDF experiment at Fermilab.

The particle has a mass of 4.1 billion electronvolts (GeV) and seems to be related to a handful of X and Y particles previously found at other laboratories. These particles are well measured but poorly understood. They don't fit the common pattern in which quarks and antiquarks bind together to form protons, neutrons, pions and other particles.

Some theorists think that X and Y particles resemble molecular structures. Perhaps they are made of two quark-antiquark pairs bound together for a short period of time. Or they could be something completely different.

With additional data, CMS scientists hope to understand the exact composition of the Y(4140) and get to the bottom of this mystery.

Explore further: CDF seeks massive particle that could top the Top quark

Related Stories

Particle oddball surprises physicists

March 18, 2009

(PhysOrg.com) -- Scientists of the CDF experiment at the Department of Energy's Fermi National Accelerator Laboratory announced yesterday that they have found evidence of an unexpected particle whose curious characteristics ...

Fermilab's CDF observes Omega-sub-b baryon

June 29, 2009

(PhysOrg.com) -- At a recent physics seminar at the Department of Energy’s Fermi National Accelerator Laboratory, Fermilab physicist Pat Lukens of the CDF experiment announced the observation of a new particle, the Omega-sub-b ...

Tevatron experiments close in on favored Higgs mass range

July 21, 2011

(PhysOrg.com) -- Experiments at the Department of Energy’s Fermilab are close to reaching the critical sensitivity that is necessary to look for the existence of a light Higgs particle. Scientists from both the CDF and ...

Recommended for you

Superconductors could detect superlight dark matter

February 9, 2016

(Phys.org)—Many experiments are currently searching for dark matter—the invisible substance that scientists know exists only from its gravitational effect on stars, galaxies, and other objects made of ordinary matter. ...

Absorbing acoustics with soundless spirals

February 9, 2016

Researchers at the French National Centre for Scientific Research, CNRS, and the University of Lorraine have recently developed a design for a coiled-up acoustic metasurface which can achieve total acoustic absorption in ...

The universe's primordial soup flowing at CERN

February 9, 2016

Researchers have recreated the universe's primordial soup in miniature format by colliding lead atoms with extremely high energy in the 27 km long particle accelerator, the LHC at CERN in Geneva. The primordial soup is a ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (3) Dec 05, 2012
The particle has a mass of 4.1 billion electronvolts (GeV) and seems to be related to a handful of X and Y particles previously found at other laboratories. These particles are well measured but poorly understood. They don't fit the common pattern in which quarks and antiquarks bind together to form protons, neutrons, pions and other particles….


May be they are not true particles (something like electrons), because we do not know their mechanism explaining how it works. But rather they are just 'condensed disturbed vacuum fields'! The reason behind is that conventionally, they are coherent states of vacuum fields (this is why they are unstable). To visualize the mechanism which explains how it works, see…
http://www.vacuum...=9〈=en

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.