Achilles' heel of pathogenic bacteria discovered

Dec 17, 2012

Multidrug-resistant bacteria remain a major concern for hospitals and nursing homes worldwide. Propagation of bacterial resistance is alarming and makes the search for new antimicrobials increasingly urgent. Scientists at the Max Planck Institute for Biophysical Chemistry in Göttingen have now identified a potential new target to fight bacteria: the factor EF-P. EF-P plays a crucial role in the production of proteins that are essential for the virulence of EHEC or salmonellae. The researchers' findings suggest that drugs blocking EF-P would impair the fitness of pathogenic bacteria and might lead to a new generation of specific antibiotics that allow to combat infections caused by drug-resistant pathogens.

Bacteria in hospitals can pose a major risk to patients: According to estimates of the Robert Koch Institute in Berlin, up to 600,000 people in Germany alone contract a bacterial infection there every year; 15,000 of them die from the infection. A growing number of these cases are caused by multidrug-resistant pathogens – bacteria that have become resistant to most common antibiotics. Experts have long been warning that cannot be provided quickly enough to fight such pathogens.

Scientists working with Marina Rodnina, head of the Physical Biochemistry Department at the Max Planck Institute for , have now discovered a promising target for a new generation of antibiotics: a called P (EF-P). such as Escherichia coli (E. coli) or salmonellae lacking EF-P are less fit and not as virulent as usually. So far, however, the exact function of EF-P has remained unclear.

Structural studies by Nobel Prize laureate Tom Steitz from Yale University showed how EF-P binds to the cell's , the ribosomes. Ribosomes assemble proteins from the individual building blocks – the amino acids – according to the blueprints stored in the genes. "The results of the Yale group suggested that EF-P should influence protein production in bacteria. However, we knew that most proteins can be synthesized without EF-P," says Marina Rodnina. "Thus, the intriguing question for us was: Have we overlooked proteins that can only be produced with the help of EF-P? And if so: What are these proteins?"

With these ideas in mind, the young scientists Lili Dörfel and Ingo Wohlgemuth set out searching for the "needle in the haystack". They systematically looked for amino acid sequences in proteins that could be formed only with EF-P – and found the pattern: Proteins containing more than two consecutive residues of the amino acid proline could only be manufactured efficiently in the presence of EF-P. "Proline-rich proteins are not only important for growth of bacteria, they also form dangerous weapons that salmonellae or the enterohaemorrhagic E. coli bacterium use to attack human cells," explains Wohlgemuth. Approximately 270 of the total 4,000 E. coli proteins contain this type of amino acid pattern. "Our results show that EF-P is actually an important auxiliary factor in the production of such proteins. Furthermore, this factor has been found in all bacteria studied to date," says the scientist.

Protein production, besides cell wall synthesis and replication of the genetic material, is a major target for common antimicrobials. The growing number of multidrug-resistant bacterial strains makes the search for new therapeutics all the more urgent. "A factor similar to EF-P is indeed present in human cells as well, but it differs in a number of important features from its bacterial counterpart. Therefore, EF-P represents a promising new target for fighting multidrug-resistant pathogens without inhibiting the protein production in our own cells," explains Rodnina. The Max Planck researchers in Göttingen hope that EF-P – and the proteins that regulate its activity in the bacterial cell – could be targets for a new generation of very specific, potent antibiotics.

Explore further: New functions for chromatin remodelers

More information: Lili K. Doerfel, Ingo Wohlgemuth, Christina Kothe, Frank Peske, Henning Urlaub, Marina V. Rodnina, EF-P is essential for rapid synthesis of proteins containing consecutive proline residues, Science, 13 December 2012, doi:10.1126/science.1229017

add to favorites email to friend print save as pdf

Related Stories

Raising the blockade

Dec 14, 2012

At crucial points in the metabolism of all organisms, a protein with the unwieldy name of Translation Elongation Factor P (EF-P, for short) takes center stage. What it actually does during protein synthesis has only now been ...

Infection biology: The elusive third factor

Jun 22, 2012

Researchers from Ludwig-Maximilians-Universität (LMU) in Munich have identified an enzyme that is involved in a modification pathway that is essential for bacterial pathogenicity. Because it shows no similarity to other ...

Recommended for you

New tool aids stem cell engineering for medical research

7 hours ago

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

New type of cell movement discovered

7 hours ago

For decades, researchers have used petri dishes to study cell movement. These classic tissue culture tools, however, only permit two-dimensional movement, very different from the three-dimensional movements ...

How the zebrafish gets its stripes

7 hours ago

The zebrafish, a small fresh water fish, owes its name to a striking pattern of blue stripes alternating with golden stripes. Three major pigment cell types, black cells, reflective silvery cells, and yellow ...

User comments : 0