Building molecular engine: Researchers induce uniform oscillation from random noise of single hydrogen molecule

November 14, 2012 by Bob Yirka report
Credit: (c) Science, 9 November 2012: Vol. 338 no. 6108 pp. 779-782. DOI: 10.1126/science.1227621

(Phys.org)—A team of physicists working in a lab at Free University of Berlin have succeeded in causing a quartz cantilever to oscillate uniformly using the random vibrations of a single hydrogen molecule. This effect was achieved, the team reports in their paper published in the journal Science, by exciting a hydrogen molecule with electrons and through the use of a crystal that is known for stable oscillations.

The team attached a plank shaped piece of quartz to the tip of a probe to create a cantilever. Next the probe was placed near a piece of copper with just one hydrogen molecule between them. A small amount of current was applied to the hydrogen molecule causing it to shift randomly back and forth between two states, creating . That movement of the molecule alternately attracted and repulsed the cantilever causing it to move back and forth while the movement of the cantilever in turn impacted the shifting of the . In testing the system, the researchers found that by varying the voltage applied, they could tune the movement of the cantilever causing it to progress to a uniform . They also found that they could modify the oscillation to produce larger vibrations – so large in fact that the random movement of a single hydrogen atom could be made to produce movement of an object 1019 times its own size.

The system the team built is an example of stochastic resonance, where noisy or random energy is coupled with something else to produce an orderly result. The purpose of such efforts is to find ways to draw useful energy from seemingly chaotic systems in a reliable and systematic way. occurs widely in the natural world (generally as energy pumps) providing encouragement to researchers attempting to replicate it in the lab.

In discussing their results, the team suggests their experiment demonstrates that a new kind of molecular motor might be built; one that is able to transform random or chaotic energy into predictable coordinated motion at a very small scale. They intend to continue their research to see what other sorts of materials might be used to produce similar results, including replacing voltage with light.

Explore further: U.S. funds hydrogen experiment

More information: Driving a Macroscopic Oscillator with the Stochastic Motion of a Hydrogen Molecule, Science, 9 November 2012: Vol. 338 no. 6108 pp. 779-782. DOI: 10.1126/science.1227621

ABSTRACT
Energy harvesting from noise is a paradigm proposed by the theory of stochastic resonances. We demonstrate that the random switching of a hydrogen (H2) molecule can drive the oscillation of a macroscopic mechanical resonator. The H2 motion was activated by tunneling electrons and caused fluctuations of the forces sensed by the tip of a noncontact atomic force microscope. The stochastic molecular noise and the periodic oscillation of the tip were coupled in a concerted dynamic that drives the system into self-oscillation. This phenomenon could be a way for enhancing the transfer of energy from incoherent sources into coherent dynamics of a molecular engine.

Related Stories

U.S. funds hydrogen experiment

February 26, 2007

The U.S. Energy Department has awarded a U.S. researcher a $3 million grant for a project that focuses on harnessing photoactive material from the sun.

Scientists track electrons in molecules

June 13, 2010

(PhysOrg.com) -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will facilitate observations ...

Positioning and pinching slow proton movement in catalyst

September 20, 2011

Twisting and pinching slow a catalyst's ability to generate energy from hydrogen, according to scientists at Pacific Northwest National Laboratory's Center for Molecular Electrocatalysis. In converting hydrogen to electricity, ...

Random noise helps make signals clearer

December 6, 2011

Scientists have shown the energy conditions, under which a weak signal supplied to a physical system emerges as a stronger signal at the output thanks to the presence of random noise (a process known as stochastic resonance), ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
not rated yet Nov 14, 2012
I question how the word "random" can be applied to a single hydrogen molecule, for which all the available quantum states are known.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.