Building molecular engine: Researchers induce uniform oscillation from random noise of single hydrogen molecule

Nov 14, 2012 by Bob Yirka report
Credit: (c) Science, 9 November 2012: Vol. 338 no. 6108 pp. 779-782. DOI: 10.1126/science.1227621

(Phys.org)—A team of physicists working in a lab at Free University of Berlin have succeeded in causing a quartz cantilever to oscillate uniformly using the random vibrations of a single hydrogen molecule. This effect was achieved, the team reports in their paper published in the journal Science, by exciting a hydrogen molecule with electrons and through the use of a crystal that is known for stable oscillations.

The team attached a plank shaped piece of quartz to the tip of a probe to create a cantilever. Next the probe was placed near a piece of copper with just one hydrogen molecule between them. A small amount of current was applied to the hydrogen molecule causing it to shift randomly back and forth between two states, creating . That movement of the molecule alternately attracted and repulsed the cantilever causing it to move back and forth while the movement of the cantilever in turn impacted the shifting of the . In testing the system, the researchers found that by varying the voltage applied, they could tune the movement of the cantilever causing it to progress to a uniform . They also found that they could modify the oscillation to produce larger vibrations – so large in fact that the random movement of a single hydrogen atom could be made to produce movement of an object 1019 times its own size.

The system the team built is an example of stochastic resonance, where noisy or random energy is coupled with something else to produce an orderly result. The purpose of such efforts is to find ways to draw useful energy from seemingly chaotic systems in a reliable and systematic way. occurs widely in the natural world (generally as energy pumps) providing encouragement to researchers attempting to replicate it in the lab.

In discussing their results, the team suggests their experiment demonstrates that a new kind of molecular motor might be built; one that is able to transform random or chaotic energy into predictable coordinated motion at a very small scale. They intend to continue their research to see what other sorts of materials might be used to produce similar results, including replacing voltage with light.

Explore further: Finding faster-than-light particles by weighing them

More information: Driving a Macroscopic Oscillator with the Stochastic Motion of a Hydrogen Molecule, Science, 9 November 2012: Vol. 338 no. 6108 pp. 779-782. DOI: 10.1126/science.1227621

ABSTRACT
Energy harvesting from noise is a paradigm proposed by the theory of stochastic resonances. We demonstrate that the random switching of a hydrogen (H2) molecule can drive the oscillation of a macroscopic mechanical resonator. The H2 motion was activated by tunneling electrons and caused fluctuations of the forces sensed by the tip of a noncontact atomic force microscope. The stochastic molecular noise and the periodic oscillation of the tip were coupled in a concerted dynamic that drives the system into self-oscillation. This phenomenon could be a way for enhancing the transfer of energy from incoherent sources into coherent dynamics of a molecular engine.

Related Stories

U.S. funds hydrogen experiment

Feb 26, 2007

The U.S. Energy Department has awarded a U.S. researcher a $3 million grant for a project that focuses on harnessing photoactive material from the sun.

Random noise helps make signals clearer

Dec 06, 2011

Scientists have shown the energy conditions, under which a weak signal supplied to a physical system emerges as a stronger signal at the output thanks to the presence of random noise (a process known as stochastic resonance), ...

Scientists track electrons in molecules

Jun 13, 2010

(PhysOrg.com) -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will ...

Positioning and pinching slow proton movement in catalyst

Sep 20, 2011

Twisting and pinching slow a catalyst's ability to generate energy from hydrogen, according to scientists at Pacific Northwest National Laboratory's Center for Molecular Electrocatalysis. In converting hydrogen to electricity, ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
not rated yet Nov 14, 2012
I question how the word "random" can be applied to a single hydrogen molecule, for which all the available quantum states are known.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.