Innovative medical textiles eliminates bacteria

Nov 13, 2012
Innovative medical textiles eliminates bacteria
Credit: UPC

Scientists at the Universitat Politècnica de Catalunya BarcelonaTech (UPC) in Spain have succeeded in eliminating infectious bacteria from medical textiles by using an enzymatic pre-treatment combined with simultaneous deposition of nanoparticles and biopolymers under ultrasonic irradiation. This was an outcome of the SONO ('A pilot line of antibacterial and antifungal medical textiles based on a sonochemical process') project, which is funded under the 'Nanosciences, nanotechnologies, materials and new production technologies' (NMP) Theme of the EU's Seventh Framework Programme (FP7) to the tune of EUR 8.3 million. SONO is targeting the improvement of antimicrobial properties on medical textiles through the use of the state-of-the-art technique.

The researchers said the technique creates fully sterile antimicrobial textiles that help keep hospital-acquired infections at bay. One of the biggest challenges facing hospitals are nosocomial infections, which are infections not present and without evidence of incubation at the time of admission. These types of infections include bacterial and fungal infections, and they are aggravated by the reduced resistance of patients.

The SONO consortium, headed up by Bar-Ilan University in Israel and made up of 17 European partners, used enzymes that improve adhesion of the antimicrobial to the fabric under ultrasonic irradiation. The application of the enzymes allowed them to boost the durability of the nanoparticles on the fabric to a level that ensured their presence even after 70 laundry cycles.

Thanks to the results of this study, production of textiles with that are 100 % effective is possible. Another winning factor for the 's effectiveness is to incorporate into the fabric. These materials are based on organic and inorganic components, including zinc and chitosan nanoparticles. So not only do these materials eradicate the bacteria that are present, they also hinder the growth of new microbes.

The researchers are already collaborating with producers to make hospital gowns and linens; two prototype machines are being used to accomplish this, with one at the facilities of the Italian firm Klopman International and the other at the Davo Clothing group in Romania. A hospital in Sofia, Bulgaria is testing the fabrics, and the results are positive so far.

The growing rate of nosocomial infections are due to various factors, including the appearance of resistant microorganisms, an increased number of immunocompromised patients, more complex medical interventions and the performance of invasive procedures.

Studies have shown that infections acquired in hospitals are strong triggers of mortality and increased morbidity in in-patients. Between 3 % and 10 % of in-patients become infected while at hospital and the mortality rate for nosocomial infections is 1 %. But this problem also puts a great deal of pressure on the health system. These infections lead to longer hospital stays, up to 10 days, thus exacerbating this growing problem.

Explore further: The latest fashion: Graphene edges can be tailor-made

More information: www.fp7-sono.eu/

add to favorites email to friend print save as pdf

Related Stories

'Resuscitating' antibiotics to overcome drug resistance

Mar 28, 2012

Combining common antibiotics with additional compounds could make previously resistant bacteria more susceptible to the same antibiotics. 'Resuscitation' of existing antibiotics has the potential to make infections caused ...

Honey can reverse antibiotic resistance

Apr 13, 2011

Manuka honey could be an efficient way to clear chronically infected wounds and could even help reverse bacterial resistance to antibiotics, according to research presented at the Society for General Microbiology's Spring ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.