Blocking iodide transport by inhibiting the sodium iodide symporter

Nov 08, 2012
Blocking iodide transport by inhibiting the sodium iodide symporter

(Phys.org)—Iodide entrapment in the thyroid gland is essential, and plays a key role in dysfunctions such as thyroid and breast cancers, thyroiditis, Graves–Basedow disease, and Hashimoto's disease. The accidents at Chernobyl and Fukushima have revealed growing public concerns, as exposure to radioactive iodine increases the risk of cancer and birth defects. There is an urgent need to find radioprotective molecules to prevent and treat body contamination.

Yves Ambroise and colleagues at the Biology and Technology Institute (IBiTecS, France) identified an important class of compounds that efficiently block iodide transport by inhibiting the symporter, and their results are reported in ChemMedChem.

During a hit optimization program, they synthesized and tested more than 100 molecules for their capacity to block iodide entrapment in rat thyroid cells. They identified a new lead compound with nanomolar activity and low toxicity.

This discovery opens new perspectives for the development of novel anti-thyroid drugs and radioprotective molecules, as well as pharmacological tools for further investigation of iodide traffic at the cellular level.

Explore further: Structure of sodium channels different than previously believed

More information: Ambrose, Y. Synthesis and Evaluation of 3,4-Dihydropyrimidin-2(1H)-ones as Sodium Iodide Symporter Inhibitors. ChemMedChem 2013, 8, No. 1. dx.doi.org/10.1002/cmdc.201200417

add to favorites email to friend print save as pdf

Related Stories

BUSM researchers encourage use of potassium iodide

Feb 25, 2009

Researchers from Boston University School of Medicine (BUSM) are strongly encouraging prenatal vitamin manufacturers to use only potassium iodide and not other sources of iodine in their products. According to the researchers, ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...