Blocking iodide transport by inhibiting the sodium iodide symporter

Nov 08, 2012
Blocking iodide transport by inhibiting the sodium iodide symporter

(Phys.org)—Iodide entrapment in the thyroid gland is essential, and plays a key role in dysfunctions such as thyroid and breast cancers, thyroiditis, Graves–Basedow disease, and Hashimoto's disease. The accidents at Chernobyl and Fukushima have revealed growing public concerns, as exposure to radioactive iodine increases the risk of cancer and birth defects. There is an urgent need to find radioprotective molecules to prevent and treat body contamination.

Yves Ambroise and colleagues at the Biology and Technology Institute (IBiTecS, France) identified an important class of compounds that efficiently block iodide transport by inhibiting the symporter, and their results are reported in ChemMedChem.

During a hit optimization program, they synthesized and tested more than 100 molecules for their capacity to block iodide entrapment in rat thyroid cells. They identified a new lead compound with nanomolar activity and low toxicity.

This discovery opens new perspectives for the development of novel anti-thyroid drugs and radioprotective molecules, as well as pharmacological tools for further investigation of iodide traffic at the cellular level.

Explore further: A refined approach to proteins at low resolution

More information: Ambrose, Y. Synthesis and Evaluation of 3,4-Dihydropyrimidin-2(1H)-ones as Sodium Iodide Symporter Inhibitors. ChemMedChem 2013, 8, No. 1. dx.doi.org/10.1002/cmdc.201200417

add to favorites email to friend print save as pdf

Related Stories

BUSM researchers encourage use of potassium iodide

Feb 25, 2009

Researchers from Boston University School of Medicine (BUSM) are strongly encouraging prenatal vitamin manufacturers to use only potassium iodide and not other sources of iodine in their products. According to the researchers, ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

User comments : 0