Blocking iodide transport by inhibiting the sodium iodide symporter

November 8, 2012
Blocking iodide transport by inhibiting the sodium iodide symporter

(Phys.org)—Iodide entrapment in the thyroid gland is essential, and plays a key role in dysfunctions such as thyroid and breast cancers, thyroiditis, Graves–Basedow disease, and Hashimoto's disease. The accidents at Chernobyl and Fukushima have revealed growing public concerns, as exposure to radioactive iodine increases the risk of cancer and birth defects. There is an urgent need to find radioprotective molecules to prevent and treat body contamination.

Yves Ambroise and colleagues at the Biology and Technology Institute (IBiTecS, France) identified an important class of compounds that efficiently block iodide transport by inhibiting the symporter, and their results are reported in ChemMedChem.

During a hit optimization program, they synthesized and tested more than 100 molecules for their capacity to block iodide entrapment in rat thyroid cells. They identified a new lead compound with nanomolar activity and low toxicity.

This discovery opens new perspectives for the development of novel anti-thyroid drugs and radioprotective molecules, as well as pharmacological tools for further investigation of iodide traffic at the cellular level.

Explore further: Researchers find that a commonly found contaminant may harm nursing infants

More information: Ambrose, Y. Synthesis and Evaluation of 3,4-Dihydropyrimidin-2(1H)-ones as Sodium Iodide Symporter Inhibitors. ChemMedChem 2013, 8, No. 1. dx.doi.org/10.1002/cmdc.201200417

Related Stories

BUSM researchers encourage use of potassium iodide

February 25, 2009

Researchers from Boston University School of Medicine (BUSM) are strongly encouraging prenatal vitamin manufacturers to use only potassium iodide and not other sources of iodine in their products. According to the researchers, ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.