Researchers studying nanotube toxicity develop method for finding them in soils

Oct 19, 2012 by Karin Slyker

(Phys.org)—Carbon nanotubes (CNTs) could pave the way for remarkable technology, from improved computer chips, flexible computer screens or body armor, to health applications such as bone healing and cancer treatments.

In an effort to determine the toxicity of these materials, a group of Texas Tech researchers has successfully built a testing apparatus that can quantify the presence of CNT in a given sample. It is a process easier said than done.

CNTs explained

A CNT is a carbon allotrope, just like graphite, charcoal, diamonds or graphene – the world's strongest known substance.

To the layman, graphene is a super- of arranged in a hexagonal "honeycomb" pattern. Conventional pencil graphite is simply many layers of graphene stacked together. When rolled into a tube, graphene forms a CNT, a fiber 100 times stronger than steel and six times lighter.

"What makes nanotubes even more remarkable is the fact that so many of their properties are off the charts," said Micah Green, assistant professor of chemical engineering. "They are both electrically and thermally conductive, plus they are mechanically strong. It is rare that a substance would combine all three."

Industrial uses are growing, as are concerns that these novel may have negative or unintended effects on organisms and the environment. With this in mind, environmental toxicologists at Texas Tech are exploring the fate of CNTs in biological environments and their ability to accumulate in soil, plants or other organisms.

One recurring question has slowed these studies: How can anyone be certain the tiny CNTs are present in the given sample?

"It's like a needle in a haystack," Green said. "How can you prove the effects of the needle, if you're not sure that it's really in there?"

Cooking up a solution

The impetus for the work initially began with a conversation between Green and Jaclyn Cañas, associate professor of environmental toxicology at The Institute for Environmental and Human Health at Texas Tech. Cañas described the problem of detecting CNTs in crop samples. Green suggested that exposing samples to microwaves could reveal the presence of even trace quantities of nanotubes.

CNTs have the unusual property of evolving extreme amounts of heat upon exposure to microwaves, much more so than typical materials. In fact, nanotube powder will quickly and spontaneously ignite if placed in a conventional kitchen microwave. Green's idea was to expose the sample to low-power microwaves and measure the resulting increase in temperature.

Mohammad Saed, an associate professor in electrical and computer engineering, joined the team to contribute his expertise in the area of microwave physics.

Together, the three research groups successfully built a testing apparatus and proved the concepts that microwave-based heating can quantify CNT loading inside a plant sample.

Preliminary tests resulted in a $300,000 grant from the National Science Foundation, awarded in summer 2011.

Further Testing

Continued development of the device led to a double-blind test, where a student was given samples of a specified CNT loading but was not told what the concentration was. Graduate student Fahmida Irin was principally responsible for applying the method. The double-blind test successfully duplicated the true values, and was then applied to studying the uptake of nanotubes into alfalfa plant roots grown in soil spiked with nanotubes.

"Since we started the method, we have started collaborating with other groups as well to look at the presence of nanotubes in organisms like earthworms," Green said.

The method was recently published in a paper entitled "Detection of carbon nanotubes in biological samples through microwave-induced heating" by Irin et al. in the journal Carbon. A patent application has been filed by the Office of Technology Commercialization at Texas Tech University.

Explore further: Chemical vapor deposition used to grow atomic layer materials on top of each other

More information: www.sciencedirect.com/science/article/pii/S0008622312004514

add to favorites email to friend print save as pdf

Related Stories

How do green algae react to carbon nanotubes?

Nov 04, 2011

Nanoparticles such as carbon nanotubes (CNT), which are found in an ever-increasing number of products, are ending up more and more frequently in our surroundings. If and how they affect aquatic ecosystems ...

Shining light on the elusive carbon nanotube

Oct 20, 2011

Michael Blades shakes a small bottle of liquid and watches as tiny black specks swirl around. Each speck represents a cluster of millions of carbon nanotubes (CNTs).

Recommended for you

Making 'bucky-balls' in spin-out's sights

23 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...