Researchers studying nanotube toxicity develop method for finding them in soils

Oct 19, 2012 by Karin Slyker

(Phys.org)—Carbon nanotubes (CNTs) could pave the way for remarkable technology, from improved computer chips, flexible computer screens or body armor, to health applications such as bone healing and cancer treatments.

In an effort to determine the toxicity of these materials, a group of Texas Tech researchers has successfully built a testing apparatus that can quantify the presence of CNT in a given sample. It is a process easier said than done.

CNTs explained

A CNT is a carbon allotrope, just like graphite, charcoal, diamonds or graphene – the world's strongest known substance.

To the layman, graphene is a super- of arranged in a hexagonal "honeycomb" pattern. Conventional pencil graphite is simply many layers of graphene stacked together. When rolled into a tube, graphene forms a CNT, a fiber 100 times stronger than steel and six times lighter.

"What makes nanotubes even more remarkable is the fact that so many of their properties are off the charts," said Micah Green, assistant professor of chemical engineering. "They are both electrically and thermally conductive, plus they are mechanically strong. It is rare that a substance would combine all three."

Industrial uses are growing, as are concerns that these novel may have negative or unintended effects on organisms and the environment. With this in mind, environmental toxicologists at Texas Tech are exploring the fate of CNTs in biological environments and their ability to accumulate in soil, plants or other organisms.

One recurring question has slowed these studies: How can anyone be certain the tiny CNTs are present in the given sample?

"It's like a needle in a haystack," Green said. "How can you prove the effects of the needle, if you're not sure that it's really in there?"

Cooking up a solution

The impetus for the work initially began with a conversation between Green and Jaclyn Cañas, associate professor of environmental toxicology at The Institute for Environmental and Human Health at Texas Tech. Cañas described the problem of detecting CNTs in crop samples. Green suggested that exposing samples to microwaves could reveal the presence of even trace quantities of nanotubes.

CNTs have the unusual property of evolving extreme amounts of heat upon exposure to microwaves, much more so than typical materials. In fact, nanotube powder will quickly and spontaneously ignite if placed in a conventional kitchen microwave. Green's idea was to expose the sample to low-power microwaves and measure the resulting increase in temperature.

Mohammad Saed, an associate professor in electrical and computer engineering, joined the team to contribute his expertise in the area of microwave physics.

Together, the three research groups successfully built a testing apparatus and proved the concepts that microwave-based heating can quantify CNT loading inside a plant sample.

Preliminary tests resulted in a $300,000 grant from the National Science Foundation, awarded in summer 2011.

Further Testing

Continued development of the device led to a double-blind test, where a student was given samples of a specified CNT loading but was not told what the concentration was. Graduate student Fahmida Irin was principally responsible for applying the method. The double-blind test successfully duplicated the true values, and was then applied to studying the uptake of nanotubes into alfalfa plant roots grown in soil spiked with nanotubes.

"Since we started the method, we have started collaborating with other groups as well to look at the presence of nanotubes in organisms like earthworms," Green said.

The method was recently published in a paper entitled "Detection of carbon nanotubes in biological samples through microwave-induced heating" by Irin et al. in the journal Carbon. A patent application has been filed by the Office of Technology Commercialization at Texas Tech University.

Explore further: Demystifying nanocrystal solar cells

More information: www.sciencedirect.com/science/… ii/S0008622312004514

add to favorites email to friend print save as pdf

Related Stories

How do green algae react to carbon nanotubes?

Nov 04, 2011

Nanoparticles such as carbon nanotubes (CNT), which are found in an ever-increasing number of products, are ending up more and more frequently in our surroundings. If and how they affect aquatic ecosystems ...

Shining light on the elusive carbon nanotube

Oct 20, 2011

Michael Blades shakes a small bottle of liquid and watches as tiny black specks swirl around. Each speck represents a cluster of millions of carbon nanotubes (CNTs).

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.