Reducing the environmental impact: New tools to aid in recycling flat-screen monitors, TVs

Oct 10, 2012 by Emil Venere
Purdue University researchers are developing tools to help industry efficiently recycle millions of flat-screen monitors and television sets expected to become obsolete soon. The monitors contain hazardous - as well as valuable - materials. In this picture, the lines and dots in a drive circuit contain indium, which sells for about $600 per kilogram. Credit: University image/Gamini Mendis

(Phys.org)—Millions of flat-screen monitors and television sets will soon become obsolete, posing environmental hazards, and Purdue University researchers are developing tools to help industry efficiently recycle the products.

Liquid crystal displays manufactured before 2009 use cold cathode fluorescent lamps, or CCFLs, to backlight the display. The CCFL displays contain mercury, making them hazardous to dispose of or incinerate.

"Over the next few years, it is expected that hundreds of millions of CCFL-backlighted LCDs will retire each year," said Fu Zhao, an assistant professor in the School of Mechanical Engineering and Division of Environmental and . "Without proper treatment, these used LCDs could lead to serious damage to the environment."

Purdue researchers are working to aid industry in recycling the displays through a new project funded by the U.S. 's People, Prosperity and the Planet - or P3 - program.

"We will produce equipment and tools specifically designed to disassemble LCDs with acceptable labor cost while recovering high-value components and reducing ," Zhao said.

He is leading the project with Carol Handwerker, Reinhardt Schuhmann Jr. Professor of Materials Engineering.

Electronic products contain such as and brominated flame retardants. The materials can leach out of landfills into groundwater and streams or be converted into "super toxicants" including while being incinerated.

More than 3 million tons of e-waste were generated in 2007 in the United States, with 13.6 percent collected for recycling and 86.4 percent going to landfills and incinerators. Environmental concerns have led 25 states to pass laws mandating e-waste recycling.

"Because many states have laws prohibiting disposal of electronic wastes in landfills, used LCDs are likely to be incinerated in large-scale capital-intensive facilities or shipped to developing countries," Zhao said. "Neither scenario is good from a sustainability perspective. Incineration is expensive, and materials and energy are wasted. Exporting e-wastes to developing countries damages local environments, harms people's health and is against environmental justice."

This picture shows the various layers of a flat-screen monitor. Millions of the monitors and television sets will soon become obsolete, posing environmental hazards, and Purdue University researchers are developing tools to help industry efficiently recycle the products. Credit: Purdue University image/Gamini Mendis

LCD hardware typically has a lifespan of 10 to 20 years.

"However, due to rapid technology advances, LCD monitors and TVs are becoming obsolete much faster," Zhao said. "The life cycle for products is speeding up, in part because people want the latest products."

Surveys of e-waste collectors and recyclers indicate that LCD monitors and TVs manufactured four to five years ago have started showing up in waste streams. The high cost of e- in the United States and Europe has posed challenges in managing the high-tech trash, but new tools to efficiently disassemble LCD panels could make recycling profitable, he said.

"Recycling hundreds of millions of LCDs will create new job opportunities," Zhao said.

The new equipment and tools will be tested by e-waste recyclers, and field data will be collected. The tools will be used to more easily remove a monitor's housing and detach circuit boards and metal frames, then separate polarizing filters, glass, liquid crystals, and the mercury-containing backlight unit.

"A unique feature is that these new tools allow quick access, separation, and recovery of high value parts and toxic sub-assemblies," Zhao said.

An LCD monitor includes the front frame, back cover, metal frame, circuit boards, the liquid crystal subassembly with a driver circuit and the backlight unit. Electrode patterns are made of a layer of indium tin oxide, or ITO. The backlight unit includes a frame, fluorescent tubes, a prism, a "diffuser," a reflector, and a protective layer. The subassembly's drive circuit has a gold coating.

"The gold price is currently higher than $50 per gram, and the drive circuit may contain 1-2 grams of gold," Zhao said.

In the past several years, increasing demands from LCD and thin-film solar cell manufacturing have led to the price of indium running from less than $100 per kilogram in 2003 to more than $600 per kilogram in 2011.

"Therefore, recovering the ITO-coated glass makes business sense," Zhao said.

Because fluorescent tubes in the backlight unit contain mercury, the unit must be removed carefully and then sent for proper disposal. To access the backlight unit, the front frame has to be removed first.

"Although screw drivers can be used to remove the front frame, this is not preferred due to potential risks of breaking the backlight unit, which results in mercury release," Zhao said. "To minimize the probability of breaking the tubes, a case-opening tool will first be developed."

A different tool will be developed to remove the back cover from the metal frame.

In 2010, LCD TVs using light emitting diodes as backlights gained popularity. The LED-backlighted LCDs contain no toxic substances and consume 20 percent to 30 percent less electricity than the CCFL technology.

"Although the LED monitors don't contain mercury, they are still e-waste and will need to be recycled," Zhao said. "At the same time, the LED-backlighted monitors contain valuable materials that will be cost-effective to recover."

Explore further: Identifying long-distance threats: New 3D technology could improve CCTV images

add to favorites email to friend print save as pdf

Related Stories

Unlocking the riddle of LCD re-use

Sep 05, 2006

Scientists at the University of York are to play a pivotal role in new research aimed at averting a growing environmental problem caused by discarded liquid crystal displays (LCDs).

Steve Jobs Blogs on Making Apple Greener

May 03, 2007

The Apple CEO's latest post outlines Apple's plans to become environmentally friendlier through safer display technology and an expanded iPod recycling program.

In 27 states, don't call your old computer 'trash'

Jan 04, 2011

(AP) -- Get a new flat-screen TV for Christmas and wondering what to do with the old console? Finally replacing that turntable with an MP3 player? Just upgrading your Mac? Whatever it is, you'd better check your state's ...

Recommended for you

3D printed nose wins design award

7 hours ago

A Victoria University of Wellington design student is the New Zealand finalist for the James Dyson Award 2014 for his Master's project—a 3D printed prosthetic nose.

Engineering the Kelpies

8 hours ago

Recently, Falkirk in Scotland saw the opening of the Kelpies, two thirty metre high horse head sculptures either side of a lock in a new canal extension.

Technology on the catwalk

8 hours ago

Summer days bring thoughts of beach picnics, outdoor barbecues and pool parties. Yet it only takes the buzz of one tiny mosquito to dampen the fun.

Dismantling ships and the trajectory of steel

8 hours ago

Tell me how you dismantle a ship, and I'll tell how a region can prosper from its steel! This could be the motto of this master's cycle at ENAC during which the projects of two civil engineering students ...

User comments : 0