Brain study: Singing mice show signs of learning

October 10, 2012
This image shows the motor cortex neurons that directly project to the brainstem and ultimately control the larynx of male mice. Credit: Gustavo Arriaga and Erich Jarvis, Duke.

Guys who imitate Luciano Pavarotti or Justin Bieber to get the girls aren't alone. Male mice may do a similar trick, matching the pitch of other males' ultrasonic serenades. The mice also have certain brain features, somewhat similar to humans and song-learning birds, which they may use to change their sounds, according to a new study.

"We are claiming that mice have limited versions of the brain and behavior traits for that are found in humans for learning speech and in birds for learning song," said Duke Erich Jarvis, who oversaw the study. The results appear Oct. 10 in and are further described in a review article in Brain and Language.

The discovery contradicts scientists' 60-year-old assumption that mice do not have vocal learning traits at all. "If we're not wrong, these findings will be a big boost to scientists studying diseases like autism and ," said Jarvis, who is a Howard Hughes Medical Institute investigator. "The researchers who use mouse models of the vocal communication effects of these diseases will finally know the that controls the mice's vocalizations."

This video is not supported by your browser at this time.
This is a mouse song. Credit: Citation: Arriaga G, Zhou EP, Jarvis ED (2012) Of Mice, Birds, and Men: The Mouse Ultrasonic Song System Has Some Features Similar to Humans and Song-Learning Birds. PLoS ONE 7(10): e46610. doi:10.1371/journal.pone.0046610

Jarvis acknowledged that the findings are controversial because they contradict scientists' long-held assumption about mice vocalizations. His research suggests the vocal in mice brains are more similar to those in than to sound-making circuits in the brains of chimpanzees and other non-human primates. The results also contradict two recent studies suggesting mice do not match pitch or have deafness-induced vocalization changes.

"This is a very important study with great findings," said Kurt Hammerschmidt, an expert in at the German Primate Center who was not involved in the study. He is cautious about some of the claims but suggested that if mice can learn vocalizations they could become a good model to study the genetic foundation of the evolution of language.

Jarvis, his former graduate student Gustavo Arriaga, and a colleague from Tulane University tested male mice for vocal learning traits as part of a larger project to study speech evolution in humans. Vocal learning appears to be unique to humans, songbirds, parrots and hummingbirds and scientists define it with five features related to brain structure and behavior. Since scientists have never found the features in other animals, "I almost expected every experiment in mice to fail," Arriaga said.

In the study, funded by HHMI, NSF and NIH, Arriaga first used gene expression markers, which lit up neurons in the of the mice's brain as they sang. Arriaga then damaged these song-specific neurons in the motor cortex and observed that the mice couldn't keep their songs on pitch or repeat them as consistently, which also happened when the mice became deaf.

Arriaga also used an injectable tracer, which mapped the signals controlling song as they moved from the neurons in the motor cortex to those in the brainstem and then to the muscles in the larynx. "This direct projection from the mice's forebrain to the brainstem and muscles was the biggest surprise," Jarvis said.

"The evidence of direct projection from these motor cortex regions is a great finding," Hammerschmidt said. "And I think it is important to try to understand whether these projections are really able to work in a similar way like such projections known in birds and humans." The question is whether mice can learn a vocalization the way other species do. The researchers found that when two male mice were placed in the same cage with a female, the males' pitch began to converge after seven to eight weeks. Arriaga and Jarvis tested more than 14 mice and repeated the experiment twice to confirm the result.

Hammerschmidt is skeptical. Jarvis and Arriaga's "pitch convergence story is less convincing," he said. Scientists have observed pitch convergences in non-vocal learners and the number of tested animals in this study could be too low to determine whether the discovered effect is reliable, he said.

Jarvis disagrees, but added that more work does need to be done to know if mice can learn other features of or if their learning is limited to just pitch.

"Our results show that mice have the five features scientists associate with vocal learning. In mice, they don't exist at the advanced levels found in humans and song-learning birds, but they also are not completely absent as commonly assumed," he said. His team is now searching mouse brains for genes specific to the brain circuits for vocal behavior. So far, these genes have only been found in songbirds and humans but, based on these results, could be in too, Jarvis said.

Explore further: A gene implicated in human language affects song learning in songbirds

More information: "Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds," Arriaga, G. et. al. (2012) PLOS ONE. dx.plos.org/10.1371/journal.pone.0046610

"Mouse vocal communication system: are ultrasounds learned or innate?" Arriaga, G. et. al. (2012) Brain and Language.

Related Stories

Bird brains suggest how vocal learning evolved

March 12, 2008

Though they perch far apart on the avian family tree, birds with the ability to learn songs use similar brain structures to sing their tunes. Neurobiologists at Duke University Medical Center now have an explanation for this ...

'Singing' mice -- the ongoing debate of nature vs. nurture

March 9, 2011

What happened to being "quiet as a mouse"? Researchers have recently shown that, rather than being the silent creatures of popular belief, mice emit ultrasonic calls in a variety of social contexts, and these calls have song-like ...

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

alfie_null
not rated yet Oct 11, 2012
I wonder what the effect would be of playing back a mouse's own song to the mouse as he sings? Delayed by various amounts of time.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.