Advancing scientific insights into quantum systems

October 11, 2012

(—A paper published last year by the Centre of Engineered Quantum Systems (EQuS) researchers has been selected for the New Journal of Physics (NJP): Highlights of 2011.

The paper entitled, "Two photon quantum walks in an elliptical direct-wire waveguide array," looks at the evolution of two-photon states in an elliptic array of waveguides.

The paper was deemed by the NJP to be seen as advancing scientific insight within the Physics community, and worthy of note in their latest publication.

Paper co-author Matthew Broome from the Centre said this work highlighted the feasibility of emulation of coherent in three-dimensional waveguide structures.

"Using integrated optics provides an ideal test-bed for the emulation of quantum systems via continuous-time quantum walks," Mr Broome said.

"We characterise the photonic chip via coherent light tomography and use the results to predict distinct differences between two, two photon inputs. We then compare these with the experimental observations."

Other EQuS Researchers include J Owens, Devon Biggerstaff, M Goggin, A Fedrizzi, Trond Linjordet, Jason Twamley and Andrew White are named authors on the paper which appears in the thirteenth volume of the publication.

This work support the EQuS research into Synthetic Quantum Systems and Simulation that aims to harness quantum mechanical phenomena to enhance the functionality and power of information and communication technologies.

Photons are indispensable for , and work, such as the research being conducted at EQuS, are leading the approach to and simulation.

The realisation of future technologies in these areas will require miniaturization and integration of high performance components, including single and detectors, and photonic for manipulating and distributing photons.

EQuS is an Australia Research Centre of Excellence that seeks to initiate the Quantum Era in the 21st century by engineering designer .

Through focused and visionary research EQuS will deliver new scientific insights and fundamentally new technical capabilities across a range of disciplines.

Impacts of this work will improve the lives of Australians and people all over the world by producing breakthroughs in physics, engineering, chemistry, biology and medicine.

Explore further: Photonic quantum technologies could be only light years away

More information:

Related Stories

Quantum interference fine-tuned by Berry phase

July 5, 2012

( -- A team from the University of Bristol’s Centre for Quantum Photonics (CQP) has experimentally demonstrated how to use Berry’s phase to accurately control quantum interference between different photons.

Hi-fi single photons

October 4, 2012

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.