Advancing scientific insights into quantum systems

Oct 11, 2012

(Phys.org)—A paper published last year by the Centre of Engineered Quantum Systems (EQuS) researchers has been selected for the New Journal of Physics (NJP): Highlights of 2011.

The paper entitled, "Two photon quantum walks in an elliptical direct-wire waveguide array," looks at the evolution of two-photon states in an elliptic array of waveguides.

The paper was deemed by the NJP to be seen as advancing scientific insight within the Physics community, and worthy of note in their latest publication.

Paper co-author Matthew Broome from the Centre said this work highlighted the feasibility of emulation of coherent in three-dimensional waveguide structures.

"Using integrated optics provides an ideal test-bed for the emulation of quantum systems via continuous-time quantum walks," Mr Broome said.

"We characterise the photonic chip via coherent light tomography and use the results to predict distinct differences between two, two photon inputs. We then compare these with the experimental observations."

Other EQuS Researchers include J Owens, Devon Biggerstaff, M Goggin, A Fedrizzi, Trond Linjordet, Jason Twamley and Andrew White are named authors on the paper which appears in the thirteenth volume of the publication.

This work support the EQuS research into Synthetic Quantum Systems and Simulation that aims to harness quantum mechanical phenomena to enhance the functionality and power of information and communication technologies.

Photons are indispensable for , and work, such as the research being conducted at EQuS, are leading the approach to and simulation.

The realisation of future technologies in these areas will require miniaturization and integration of high performance components, including single and detectors, and photonic for manipulating and distributing photons.

EQuS is an Australia Research Centre of Excellence that seeks to initiate the Quantum Era in the 21st century by engineering designer .

Through focused and visionary research EQuS will deliver new scientific insights and fundamentally new technical capabilities across a range of disciplines.

Impacts of this work will improve the lives of Australians and people all over the world by producing breakthroughs in physics, engineering, chemistry, biology and medicine.

Explore further: A 'quantum leap' in encryption technology

More information: iopscience.iop.org/1367-2630/13/7/075003/

add to favorites email to friend print save as pdf

Related Stories

Hi-fi single photons

Oct 04, 2012

Many quantum technologies—such as cryptography, quantum computing and quantum networks—hinge on the use of single photons. While she was at the Kastler Brossel Laboratory (affiliated with the Pierre and Marie Curie University, ...

Quantum interference fine-tuned by Berry phase

Jul 05, 2012

(Phys.org) -- A team from the University of Bristol’s Centre for Quantum Photonics (CQP) has experimentally demonstrated how to use Berry’s phase to accurately control quantum interference between different photons.

Recommended for you

A 'quantum leap' in encryption technology

11 hours ago

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Probing the sound of a quantum dot

14 hours ago

(Phys.org) —Physicists at the University of Sydney have discovered a method of using microwaves to probe the sounds of a quantum dot, a promising platform for building a quantum computer.

Phase transiting to a new quantum universe

16 hours ago

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.