Seeing the light with nist's new noiseless optical amplifier

Aug 09, 2012
Seeing the light with nist's new noiseless optical amplifier
This short movie shows the image of the 'N' in NIST being randomly amplified and de-amplified by the four-wave mixing technique. The intensity of the image changes randomly because the lasers were deliberately not stabilized with respect to each other when making the video to better illustrate how well the technique worked. Credit: Corzo/NIST

(Phys.org) -- Most devices that amplify light suffer from the same problem: making the image brighter also adds muddying distortion. Scientists working at the National Institute of Standards and Technology have demonstrated that they can amplify weak light signals without adding noise while also carrying more information—more pixels—than other low-noise amplifiers. The new development could improve optical communications, quantum computing and information processing, and enhance biological and astronomical imaging.

Researchers have developed other light amplifiers using "nonlinear" crystals and optical fibers that don't add noise, but they're limited when it comes to amplifying images. Crystals need high laser intensities, which can distort the image. Amplifying light with fibers works well, but the fibers have to be long and the beam is confined to a small area, which constrains the complexity of the image to single pixels.

NIST's four-wave mixing technique amplifies images by intersecting the light from three differently colored lasers—two "pumps" and a probe laser carrying the image—at precise angles inside a gas of hot rubidium atoms. After passing through a stencil in the shape of the image they want to amplify, the probe laser, whose color, or frequency, is halfway between those of the pump lasers, bisects the angle made by the pump lasers. The combination of the lasers' color, their angle of intersection, and their interaction with the rubidium gas creates the conditions for noiseless amplification of complex images with potentially thousands of pixels.

There is a limitation to this kind of an amplifier—it's "phase sensitive." This means that for the amplification to be noiseless, the pump and signal beams going into the amplifier have to remain stable with respect to each other to within a small fraction of a wavelength so that the beams interfere and add up properly. Such a condition on the beams makes it harder to keep them aligned and stable than for the more common "phase insensitive" amplifiers.

According to NIST physicist Paul Lett, this technique can amplify images by a factor of up to 4.6 times the original signal strength.

"The we use is infrared, which is good for biological and astronomical imaging," says Lett. "Now we just need to show that our technique amplifies the image faithfully, pixel by pixel, so that we can be assured that it is fully practicable."

Explore further: Precision gas sensor could fit on a chip

More information: N.V. Corzo, A.M. Marino, K.M. Jones and P.D. Lett. Noiseless optical amplifier operating on hundreds of spatial modes. Physical Review Letters. Published online July 26, 2012.

Related Stories

Novel optical amplifier without the noise

Jul 08, 2011

Researchers in Sweden have succeeded in delivering an optical amplifier capable of amplifying light with extremely low noise. The study is published in the journal Nature Photonics.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Going
5 / 5 (1) Aug 09, 2012
Still more of the Universe opens up to observation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.