So how do plants know when to flower?

Jul 30, 2012

Professor Caroline Dean recently wrote a blog article for The Independent website on how plants know when to flower. This was part of a series of blogs on Women in Science.

Caroline also took her research to the streets of the South Bank in London as part of Soapbox Science. This event was organised by The Zoological Society of London and the L’Oréal-UNESCO For Program. It brought together some of the UK’s leading scientists to talk about their own research and careers to a public audience.

This video is not supported by your browser at this time.

The flush of flowering of poppies in a field makes the point very visually – the control of flowering time is a tightly regulated process. All the poppies choose to flower within a day or two of each other, having individually integrated a range of environmental and endogenous signals over many months.

This synchronization aligns the delicate phase of pollination and seed formation to occur in spring and summer when conditions are generally good, maximizing seed production. It also aligns flowering in species that cross-pollinate.

As well as providing an understanding one of the most important and fundamental processes in plants, research on flowering is also extremely important for agriculture. Breeding for flowering time variation in many crops has significantly extended the geographical range of where they are grown. We need to accelerate this activity to keep up with a changing climate!

For the last 23 years I have been studying the molecular biology that underpins the control of flowering. This was a big puzzle and so it has has taken a long time to unravel but from a starting point of almost no molecular understanding we now have a good idea of the regulatory network controlling flowering.  In addition, we now understand that the enormous variation in requirements for flowering in different plant species (for example, some need a particular daylength, others different temperatures) arises from relatively subtle rewiring of gene interactions within the overall conserved genetic network.

My focus has been on how plants sense and respond to winter. Many plants will not flower unless they have had a period of prolonged cold. If you sow these types in spring rather than autumn they turn into massive green leafy plants but will not flower – my husband managed to do this experiment in our garden with some broccoli plants.

Plants actively make repressor proteins that keep all the genes required to make a flower switch off. The prolonged cold of winter overcomes this block to flowering by silencing expression of this repressor. Cold switches the repressor gene off slowly but surely and then a memory system similar to one operating in our own bodies maintains that OFF state after the temperature warms up again in spring. The way this memory works is very conserved which means it works in a similar way in many organisms including humans. Its mis-regulation can cause uncontrolled cell proliferation and accounts for many cancers and other diseases. Dissection of the mechanism using the plant system could provide important clues to help develop future therapies.

Very subtle changes in this memory system have also played important roles in enabling to adapt to many climates. We work with a particular plant called thale cress (Arabidopsis thaliana) – you will find it all over your garden. It has a very small genome and has become the reference for all plant analysis rather like the Drosophila fly for human biology. Thale cress is found growing from the equator to the Arctic Circle and is a great system to understand adaptation. Combining detailed molecular experiments with fieldwork in Northern Sweden enables us to really understand the evolutionary processes behind adaptation.

I feel privileged to have been able have a career in research– it is wonderful to be able to follow a passion and be paid for it! It is flexible and absorbing. I would recommend it to everyone – and regularly do so to my two children. As a governor of a local girls’ school I encourage the sixth formers to consider general science degrees rather than the traditional choice of medicine. You CAN have it all…

Explore further: Male monkey filmed caring for dying mate (w/ Video)

More information: Women in SCIENCE: So how do plants know when to flower?

add to favorites email to friend print save as pdf

Related Stories

Geneticists shed light on flowering plants

Jun 29, 2010

A team of researchers from Warwick have isolated a gene responsible for regulating the expression of CONSTANS, an important inducer of flowering, in Arabidopsis.

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

Apr 18, 2014

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.