Understanding a novel form of turbulence

Jun 05, 2012
Understanding a novel form of turbulence
Credit: Thinkstock

French researchers from CNRS have provided solutions to important problems related to turbulent flow in stratified systems such as the oceans and the atmosphere.

A new class of three-dimensional (3D) turbulence known as zig-zag instability (ZZI) has recently been shown to be the cause of decoupling of horizontal layers in stably stratified fluids, those with layers of densities decreasing in the vertical direction. Such systems are common both in the atmosphere and the oceans.

The EU-funded ‘Three-dimensional structure of stratified turbulence’ (3DZZI) project was undertaken to evaluate the evolution of ZZI in experimentally forced stratified turbulence given that previous work on the phenomenon was restricted to conventional flows.

Scientists generated stratified using 12 vortex generators in a stably and linearly stratified tank. Velocity measurements confirmed that the flow organized itself into horizontal layers via ZZI.

ZZI can induce formation of so-called pancake vortices that in turn cause formation of secondary instabilities including shear and gravitational instabilities that are as yet not well understood.

Researchers numerically investigated the conditions of onset and evolution of secondary instabilities as a function of vertical thickness of the pancake vortex, enabling determination of stability boundaries for the parameters studied.

In addition, to gain further insight into gravitational instability in a pancake vortex, scientists analysed the stability of a linearly and unstably stratified fluid in solid body rotation. Results were generalised to obtain the radial distribution of velocity predicting dominant instability.

3DZZI outcomes have important implications for a number of geophysical flows in the oceans and such as vertical transport of pollutants over urban areas.

Explore further: Tiny particles have big potential in debate over nuclear proliferation

add to favorites email to friend print save as pdf

Related Stories

Advances in mathematical description of motion

May 29, 2012

Complex mathematical investigation of problems relevant to classical and quantum mechanics by EU-funded researchers has led to insight regarding instabilities of dynamic systems. This is important for descriptions ...

Recommended for you

New method for non-invasive prostate cancer screening

14 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

15 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

15 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

20 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0