Researchers calculate size of particles in Martian clouds of CO2 snow

Jun 19, 2012 by Jennifer Chu
Researchers have determined the size of CO2 snow particles on Mars, depicted in this artist's rendering as a mist or fog that eventually settles to the surface as carbon dioxide snow. Image: NASA, Christine Daniloff/MIT News

In the dead of a Martian winter, clouds of snow blanket the Red Planet’s poles — but unlike our water-based snow, the particles on Mars are frozen crystals of carbon dioxide. Most of the Martian atmosphere is composed of carbon dioxide, and in the winter, the poles get so cold — cold enough to freeze alcohol — that the gas condenses, forming tiny particles of snow.

Now researchers at MIT have calculated the size of particles in clouds at both Martian poles from data gathered by orbiting spacecraft. From their calculations, the group found snow particles in the south are slightly smaller than snow in the north — but particles at both poles are about the size of a red blood cell.

“These are very fine particles, not big flakes,” says Kerri Cahoy, the Boeing Career Development Assistant Professor of Aeronautics and Astronautics at MIT. If the carbon dioxide particles were eventually to fall and settle on the Martian surface, “you would probably see it as a fog, because they’re so small.”

Cahoy and graduate student Renyu Hu worked with Maria Zuber, the E.A. Griswold Professor of Geophysics at MIT, to analyze vast libraries of data gathered from instruments onboard the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO). From the data, they determined the size of carbon dioxide snow particles in clouds, using measurements of the maximum buildup of surface snow at both poles. The buildup is about 50 percent larger at Mars’ south pole than its north pole.

Over the course of a Martian year (a protracted 687 days, versus Earth’s 365), the researchers observed that as it gets colder and darker from fall to winter, snow clouds expand from the planet’s poles toward its equator. The snow reaches halfway to the equator before shrinking back toward the poles as winter turns to spring, much like on Earth.

“For the first time, using only spacecraft data, we really revealed this phenomenon on Mars,” says Hu, lead author of a paper published in the Journal of Geophysical Research, which details the group’s results.

Diving through data

To get an accurate picture of carbon dioxide condensation on Mars, Hu analyzed an immense amount of data, including temperature and pressure profiles taken by the MRO every 30 seconds over the course of five Martian years (more than nine years on Earth). The researchers looked through the data to see where and when conditions would allow carbon dioxide cloud particles to form.

The team also sifted through measurements from the MGS’ laser altimeter, which measured the topography of the planet by sending laser pulses to the surface, then timing how long it took for the beams to bounce back. Every once in a while, the instrument picked up a strange signal when the beam bounced back faster than anticipated, reflecting off an anomalously high point above the planet’s surface. Scientists figured these laser beams had encountered clouds in the atmosphere.

Hu analyzed these cloud returns, looking for additional evidence to confirm carbon dioxide condensation. He looked at every case where a cloud was detected, then tried to match the laser altimeter data with concurrent data on local temperature and pressure. In 11 instances, the laser altimeter detected clouds when temperature and pressure conditions were ripe for carbon dioxide to condense. Hu then analyzed the opacity of each cloud — the amount of light reflected — and through calculations, determined the density of carbon dioxide in each cloud.

To estimate the total mass of carbon dioxide snow deposited at both poles, Hu used earlier measurements of seasonal variations in the Martian gravitational field done by Zuber’s group: As snow piles up at Mars’ poles each winter, the planet’s gravitational field changes by a tiny amount.  By analyzing the gravitational difference through the seasons, the researchers determined the total mass of snow at the north and south poles. Using the total mass, Hu figured out the number of snow particles in a given volume of snow cover, and from that, determined the size of the particles. In the north, molecules of condensed carbon dioxide ranged from 8 to 22 microns, while particles in the south were a smaller 4 to 13 microns.

“It’s neat to think that we’ve had spacecraft on or around Mars for over 10 years, and we have all these great datasets,” Cahoy says. “If you put different pieces of them together, you can learn something new just from the data.”

What can the size of snow tell us?

Hu says knowing the size of carbon dioxide snow cloud particles on Mars may help researchers understand the properties and behavior of dust in the planet’s atmosphere. For snow to form, requires something around which to condense — for instance, a small silicate or dust particle. “What kinds of dust do you need to have this kind of condensation?” Hu asks. “Do you need tiny dust particles? Do you need a water coating around that dust to facilitate cloud formation?”

Just as snow on Earth affects the way heat is distributed around the planet, Hu says snow on Mars may have a similar effect, reflecting sunlight in various ways, depending on the size of each particle. “They could be completely different in their contribution to the energy budget of the planet,” Hu says. “These datasets could be used to study many problems.”

This research was funded by the Radio Science Gravity investigation of the NASA Mars Reconnaissance Orbiter mission.

Explore further: Astronauts to reveal sobering data on asteroid impacts

More information: www.agu.org/pubs/crossref/pip/2012JE004087.shtml

Related Stories

Are gas-formed gullies the norm on Mars?

Dec 06, 2011

In June 2000, Martian imaging scientists made a striking discovery — data from NASA’s Mars Global Surveyor spacecraft found gullies on the red planet. Gullies on Earth form when water runs down steep ...

Clouds get in the way on Mars

Mar 23, 2012

The science team from the HiRISE camera on the Mars Reconnaissance Orbiter wanted to take another look at a region of icy sand dunes on Mars to look for seasonal changes as spring is now arriving on the Red ...

Device reveals more about Mars' atmosphere

Oct 12, 2010

Instruments designed by a UT Dallas professor to measure atmospheric components on the surface of Mars have uncovered important clues about the planet’s atmosphere and climate history.

Were martian rocks weathered by water?

Oct 05, 2011

There are many ways rocks can be textured. Wind erosion, water erosion, the escape of volcanic gases during their formation (in the case of igneous rocks)… all these forces can create the pitted textures ...

Texas A&M prof to predict weather on Mars

Nov 04, 2009

Is there such a thing as "weather" on Mars? There are some doubts, considering the planet's atmosphere is only 1 percent as dense as that of the Earth. Mars, however, definitely has clouds, drastically low temperatures and ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

2 hours ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

2 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

3 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

22 hours ago

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Meteorites yield clues to Martian early atmosphere

Apr 16, 2014

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Torbjorn_Larsson_OM
1 / 5 (2) Jun 19, 2012
I could not understand how the snow particle size was estimated until I looked at the abstract. The missing piece is:

"The precipitation flux is approximated by the particle settling flux which is estimated using the impulse responses of MOLA filter channels."

So by having settling data, the flux data can be used for the critical estimate. @#?! press releases... at times.
TkClick
5 / 5 (1) Jun 19, 2012
by having settling data, the flux data can be used for the critical estimate
I see, you're probably missing some scientific lingo translator...
Torbjorn_Larsson_OM
1 / 5 (1) Jun 21, 2012
LOL! No, I can swing the lingo fine most of the time, making educated guesses if need be.

The settling flux (changes in the MOLA reflection times, likely) gives them a precipitation flux, and then they can estimate a particle size that fits the settling times and other parameters. But how to get there without say settling measurements was a mystery.

More news stories

A sharp eye on Southern binary stars

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Astronaut salary

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...