Photosynthesis re-wired: Chemists use nanowires to power photosynthesis

Jun 28, 2012

Harnessing the power of the sun has inspired scientists and engineers to look for ways to turn sunlight into clean energy to heat houses, fuel factories and power devices. While a majority of this research focuses on energy production, some researchers are looking at the potential uses of these novel solar technologies in other areas.

Boston College Assistant Professor of Chemistry Dunwei Wang's work with silicon and his related construct, Nanonets, has shown these stable, tiny wire-like structures can be used in processes ranging from energy collection to hydrogen-generating water-splitting.

Teaming up with fellow Boston College Assistant Professor of Chemistry Kian L. Tan, the researchers have taken aim at a role for nanowires in .

Their work has produced a process that closely resembles photosynthesis, employing silicon nanowires to collect to power reactions capable of synthesizing the basic compounds of two popular pain-killing, anti-inflammatory drugs, they report in the current edition of , the journal of the German Chemical Society.

The reaction sequence offers an approach that differs from earlier attempts to sequester with sunlight and solves the vexing problem of carbon's low selectivity, which so far has limited earlier methods to the production of fuels. Tan and Wang report their process offers the selectivity required to produce complex organic intermediaries capable of developing pharmaceuticals and high-value chemicals.

The process succeeds in taming stubborn carbon, which structurally resists most efforts to harness it for a single chemical product. Typically, refined forms of must first be produced to produce the necessary results.

"If we can start to use carbon dioxide and light to power reactions in , there's a huge benefit to that. It allows you to bypass the middle man of fossil fuels by using light to drive the chemical reaction," said Tan. "The key is the interaction of two fields – materials and synthetic chemistry. Separately, these fields may not have accomplished this on their own. But together, we combined our knowledge to make it work."

During photosynthesis, plants capture sunlight and use this solar energy and carbon dioxide to fuel chemical reactions.

Tan and Wang used silicon nanowires as a photocathode, exploiting the wire's efficient means of converting solar energy to electrical energy. Electrons released from the atoms in the nanowires are then transferred to organic molecules to trigger .

In this case, the researchers used aromatic ketones, which when struck by electrons become active and attack and bind carbon dioxide. Further steps produced an acid that allowed the team to create the precursors to ibuprofen and naproxen with high selectivity and high yield, the team reports.

Tan and Wang were joined in the research by Research Assistant Guangbi Yuan, PhD '12, graduate student Rui Liu, doctoral student Candice L. Joe, and former doctoral student Thomas E. Lightburn, PhD '11.

Tan said it is no accident that the process so closely resembles natural photosynthesis, as chemists are constantly drawing inspiration from nature in their work.

"Researchers in my field are always drawing inspiration from nature," said Tan. "You take the basic lessons and you try to do it in an artificial way. In this work, we're trying to learn lessons from nature, although we can't copy nature directly."

Explore further: Metal encapsulation optimizes chemical reactions

Related Stories

Modified microbes turn carbon dioxide to liquid fuel

Mar 29, 2012

Imagine being able to use electricity to power your car — even if it's not an electric vehicle. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have for the first time ...

Chemists shed light on solar energy storage

Dec 08, 2006

Chemistry's role in bridging the gap between solar energy's limited present use and enormous future potential was the topic of a recent article by MIT Professor Daniel G. Nocera and a colleague.

Plant power: The ultimate way to 'go green'?

Feb 02, 2012

Researchers are turning to plants and solar power in the search for new sources of renewable and sustainable energy that can support the transition from rapidly depleting fossil fuels to a bio-based society. An article published ...

Recommended for you

Metal encapsulation optimizes chemical reactions

38 minutes ago

The chemical industry consumes millions of tons of packing materials as catalytic sup- port media or adsorbents in fixed-bed reactors and heat storage systems. Fraunhofer researchers have developed a means of encapsulating ...

Fuel and chemicals from steel plant exhaust gases

1 hour ago

Carbon monoxide-rich exhaust gases from steel plants are only being reclaimed to a minor extent as power or heat. Fraunhofer researchers have developed a new recycling process for this materially unused carbon resource: They ...

Self-assembly of molecular Archimedean polyhedra

1 hour ago

Chemists truly went back to the drawing board to develop new X-shaped organic building blocks that can be linked together by metal ions to form an Archimedean cuboctahedron. In the journal Angewandte Chemie, the sc ...

New method can make cheaper solar energy storage

4 hours ago

Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems. To accomplish this, traditional solar panels can be used to generate an electrical current that splits ...

New CMI process recycles magnets from factory floor

15 hours ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

18 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

verkle
1.6 / 5 (7) Jun 28, 2012
This is a great goal for future solar power usage. Let's put more money here rather than so-called climate change research.

antialias_physorg
3.7 / 5 (3) Jun 28, 2012
This is climate change research.

Anything that can get us off of fossil fuels is.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.