NRL researchers develop improved non-skid coating for shipboard applications

Jun 13, 2012 By Donna McKinney
The NRL-developed siloxane-based, non-skid coating is installed aboard the USS Cape St. George. Credit: U.S. Naval Research Laboratory

Scientists in the Chemistry Division at the Naval Research Laboratory have developed a novel two-component siloxane-based non-skid coating for use on flight-decks and walk-ways of U.S. Navy ships. The new coating is more durable, color retentive, chemical resistant and cheaper due to a longer life expectancy than traditional epoxy-based coatings. This research is funded by the Office of Naval Research's (ONR's) Future Naval Capability Program (Dr. Airan Perez) and supported by Naval Sea Systems Command.

Mr. John Wegand, program team member, at NRL's Center for Corrosion Science and Engineering, explains "The new siloxane-based possesses greater external durability in harsh operational environments, improved traction capabilities, ease of application and most importantly, a longer life-span reducing the overall cost of the elements compared to the current epoxy and amine component coating. The new coating is quite versatile; it can be rolled or spray-applied over either a primed or bare-metal surface. We have noted extremely positive results from our recent demonstrations conducted on several Navy ships based in Norfolk, Virginia."

The Navy installs nearly 3.7 million square feet of non-skid coating per year at an annual cost of over $56 million. The maximum life expectancy of the present non-skid coating is just 18 months. These coatings are composed of aromatic , which although initially provide good hardness and chemical resistance, are notorious for degrading rapidly when exposed to the harsh external environmental conditions that the U.S. Navy routinely encounters at sea. The material is also difficult to apply because of its short pot life and slow drying time. Both of these attributes often lead to premature failure or damage to the coatings.

The NRL-developed siloxane-based, non-skid coating is installed aboard the USS Mason. Credit: U.S. Naval Research Laboratory

Demonstration results of the newly developed silicon based non-skid coating have shown it to be much stronger, durable, color retentive, chemical resistant and much more forgiving in the application process than the current coating. Its versatility allows for application by either spraying or rolling over either primed or directly to clean and blasted steel surfaces, because of its improved bonding capabilities. "Test results proved our new coating material greatly outperformed the current coating and met all research goals for this program, especially with regard to UV and chemical resistance," concluded Mr. Wegand

As the technical lead for ONR and NAVSEA, the NRL research team's main objective was to extend the service life of Navy non-skid systems. This includes identifying, developing and/or testing next-generation non-epoxy alternatives for extended durability flight and general deck performance, as well as addressing heat-resistant issues associated with current and future vertical launch aircraft requirements.

Explore further: Chemists eye improved thin films with metal substitution

add to favorites email to friend print save as pdf

Related Stories

Spray-on protective coating wins 'R&D 100' Award

Oct 13, 2011

R&D Magazine honored Office of Naval Research scientist Dr. Roshdy George S. Barsoum with a 2011 "R&D 100" award on Oct. 13 for the development of a revolutionary coating material that is blast-and fire-resistant.

New coating protects steel and superalloys

Mar 23, 2006

Researchers at Pacific Northwest National Laboratory have developed a new ceramic-based coating for steel and superalloys that prevents corrosion, oxidation, carburization and sulfidation that commonly occur ...

Graphene is thinnest known anti-corrosion coating

Feb 22, 2012

New research has established the "miracle material" called graphene as the world's thinnest known coating for protecting metals against corrosion. Their study on this potential new use of graphene appears ...

Mussel adhesive inspires tough coating for living cells

Apr 06, 2011

Inspired by Mother Nature, scientists are reporting development of a protective coating with the potential to enable living cells to survive in a dormant condition for long periods despite intense heat, dryness and other ...

Recommended for you

Chemists eye improved thin films with metal substitution

14 hours ago

The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use ...

Researchers create safe, resistant material to store waste

21 hours ago

(Phys.org) —Storing industrial waste has never been a pretty job, and it's getting harder. New techniques for refining such metals as aluminum and vanadium, for example, also yield new byproducts that have ...

Nature's strongest glue comes unstuck

Jul 18, 2014

Over a 150 years since it was first described by Darwin, scientists are finally uncovering the secrets behind the super strength of barnacle glue.

User comments : 0